Principal investigators:

Rick Henry (University of Auckland)

Ying Zhou (Tongji University)

Geoff Rodgers (University of Canterbury)

Abstract

The increasing need to reduce damage and downtime in modern buildings has led to the development of a low-damage design philosophy, where the earthquake loads can be resisted with damage confined to easily replaceable components. Post-tensioned (PT) concrete walls have emerged as a popular low-damage structural system that have been implemented in a range of buildings. In order to provide essential evidence to support the development of low-damage concrete structures, a system-level shake-table test was conducted on a two-storey low-damage concrete wall building implementing state-of-art design concepts. The test building included PT rocking walls that provide the primary lateral-load resistance in both directions, a frame that utilized slotted beam connections, and a range of alternative energy dissipation devices that were installed at wall base or/and beam-column joints. The building was subjected to 39 tests with a range of intensity ground motions, incorporating both unidirectional and bidirectional ground motions on the structure with different combinations of wall strength and energy dissipating devices. The building performed exceptionally well during the intense series of tests, confirming the suitability of both the design methods and the connection detailing implemented. The building achieved an immediate occupancy performance objective even when subjected to maximum considered earthquake hazard shaking. The building exhibited only minor damage at the conclusion of testing, with distributed cracking in the floors and cosmetic spalling in the wall toes that did not compromise structural capacity or integrity and could be easily repaired with minimal disruption. The test has provided a rich dataset that is available for further analysis of the building response and validation of design methods and numerical models.



             

Outputs:

Published journal papers:

  • HENRY, R. S., ZHOU, Y., LU, Y., RODGERS, G., GU, A., ELWOOD, K. J., YANG, T. Y. (2021). ‘Shake-table test of a two-storey low-damage concrete wall building’. Earthquake Engineering Structural Dynamics, 1-24, 10.1002/eqe.3504.
  • ZHOU, Y., GU, A., LU, Y., SONG, G., HENRY, R. S., RODGERS, G. (2020). ‘Large-scale shaking table experimental study on a low-damage self-centering wall building’, Tumu Gongcheng Xuebao/China Civil Engineering Journal, 53(10), 62-71, [in Chinese], 10.15951/j.tmgcxb.2020.10.006.

Published Dataset:

  • Lu, Y. Henry, R. Zhou, Y. Rodgers, G. Yang, Q. Gu, A. Elwood, K. Yang, T. (2021) "Shake table test of a 2-storey low-damage concrete wall building", in ILEE-QuakeCoRE Shake table test of a 2-storey low-damage concrete wall building. DesignSafe-CI. https://doi.org/10.17603/ds2-ncac-sg36.

Presentations:

  • HENRY, R. S., RODGERS, G. W. (2019) ‘ILEE-QuakeCoRE collaboration: Low-damage concrete wall building test’, 2019 Pacific Conference in Earthquake Engineering (PCEE), Auckland, 6 April.
  • HENRY, R. S., RODGERS, G. W., LU, Y. (2019) ‘ILEE-QuakeCoRE low-damage concrete building test’, QuakeCoRE seminar, 14 June.
  • HENRY, R. S. (2020) ‘ILEE-QuakeCoRE low-damage concrete building test’, Concrete New Zealand - Learned Society webinar, 25 November.
  • HENRY, R. S., RODGERS, G. W. (2021) ‘Shake-table testing of a concrete building incorporating low-damage technologies’ 2021 NZSEE Annual Conference, Christchurch, 16 April.

YouTube Videos:

https://www.youtube.com/playlist?list=PLi7-S8FxuMGZqT2_aJwY4PqiqUB9F_VKP

Media:


  • No labels