RNC Infrastructure Research Group

Modelling the seismic response of New Zealand wharves: Case history application

Dr. Bilel Ragued

Assoc. Prof. Liam Wotherspoon

Outline

- Introduction
- CQ3 Model
- Fragility Modelling
- Conclusions

INTRODUCTION

Research Motivation

- Ports infrastructure critical to economy
- 99% of all imports and exports by volume
- Lifeline as specified by CDEM Act
- Needed for recovery after natural hazard
- Do we understand their seismic response?

San Antonio Port 2010 Chile Earthquake

-

Lyttelton Port 2011 Christchurch Earthquake

Research Objectives

- I. Collect information on New Zealand ports and review the hazard exposure.
- 2. Develop database of New Zealand wharves
- 3. Model the seismic response of key wharf at Lyttelton Port
- Conduct fragility analysis on key wharf at Lyttelton Port
- 5. Develop models to study seismic performance of wharf configurations.

Research Objectives

- I. Collect information on New Zealand ports and review the hazard exposure.
- 2. Develop database of New Zealand wharves
- 3. Model the seismic response of key wharf at Lyttelton Port
- Conduct fragility analysis on key wharf at Lyttelton Port
- 5. Develop models to study seismic performance of wharf configurations.

LYTTELTON PORT

Lyttelton Port

Lyttelton Port

CQ3Wharf

Damage Characteristics

NEW ZEALAND

Computational Modelling

- Nonlinear dynamic analysis
- Captures soilstructure interaction
- Kinematic loading due to soil movement

CQ3 Numerical Model

Soil Layers

Numerical Model

Darfield EQ - Deck Displacement

Darfield EQ - Slope Displacement

Darfield EQ - Piles

Sensitivity Analysis

EQ Sequence

EQ Sequence

Pile Bending Moment

Effect of Structural Form

Effect of Structural Form

Te Whare Wānanga o Tāmaki Makaurau

ZEALAND

NEW

FRAGILITY MODELLING

Relationship between hazard intensity and probability of damage

Fragility Analysis Framework

CQ3 Numerical Model

Scaled ground motion suite (PGV)

Dynamic analysis simulation

Defined damage states

Generate curves

Engineering Demand Parameters

- Residual deck displacement
- Maximum pile bending moment
- Residual ground displacement
- Four limit states defined for each EDP

Statistical Analysis – EDP I

Fragility Curve – EDP I

Damage States

- Minor
 - Cracking or no structural damage
 - Small settlement
- Moderate
 - Spalling and onset of yielding
 - Significant pavement cracks from slope movement

Damage States

- Major
 - Structural element yielding
 - Significant slope movement
- Severe
 - Degradation of structural strength
 - Significant slope failure
 - Loss of retaining wall capacity

Fragility Curve

Sep 04 and Feb 22 Events

CONCLUSIONS

- CQ3 model was capable of capturing kinematic and inertial loading
- Validated against the recorded velocity time histories and residual deck displacements
- Sensitivity analysis showed friction angle and cohesion of the fill and 1st layer caused the greatest variation
- Greatest pile bending moment at interface between stiff and weak layer

- CQ3 model was capable of capturing kinematic and inertial loading
- Validated against the recorded velocity time histories and residual deck displacements
- Sensitivity analysis showed friction angle and cohesion of the fill and 1st layer caused the greatest variation
- Greatest pile bending moment at interface between stiff and weak layer

- CQ3 model was capable of capturing kinematic and inertial loading
- Validated against the recorded velocity time histories and residual deck displacements
- Sensitivity analysis showed friction angle and cohesion of the fill and 1st layer caused the greatest variation
- Greatest pile bending moment at interface between stiff and weak layer

- CQ3 model was capable of capturing kinematic and inertial loading
- Validated against the recorded velocity time histories and residual deck displacements
- Sensitivity analysis showed friction angle and cohesion of the fill and 1st layer caused the greatest variation
- Greatest pile bending moment at interface between stiff and weak layer

 Framework developed for generating fragility curves

- Three EDPs adopted in this study
- Four damage states defined Serviceable, Repairable, Near Collapse and Collapse
- Fragility curves validated using the results from the Sep 04 and Feb 22 events
- Fragility curves can be used for quantifying probability of damage at each intensity level

- Framework developed for generating fragility curves
- Three EDPs adopted in this study
- Four damage states defined Serviceable, Repairable, Near Collapse and Collapse
- Fragility curves validated using the results from the Sep 04 and Feb 22 events
- Fragility curves can be used for quantifying probability of damage at each intensity level

- Framework developed for generating fragility curves
- Three EDPs adopted in this study
- Four damage states defined Minor, Moderate, Major, Severe
- Fragility curves validated using the results from the Sep 04 and Feb 22 events
- Fragility curves can be used for quantifying probability of damage at each intensity level

- Framework developed for generating fragility curves
- Three EDPs adopted in this study
- Four damage states defined Serviceable, Repairable, Near Collapse and Collapse
- Fragility curves validated using the results from the Sep 04 and Feb 22 events
- Fragility curves can be used for quantifying probability of damage at each intensity level

- Framework developed for generating fragility curves
- Three EDPs adopted in this study
- Four damage states defined Serviceable, Repairable, Near Collapse and Collapse
- Fragility curves validated using the results from the Sep 04 and Feb 22 events
- Fragility curves can be used for quantifying probability of damage at each intensity level

