
The impacts of undocumented stopbanks on flood routing: a Tasman case study

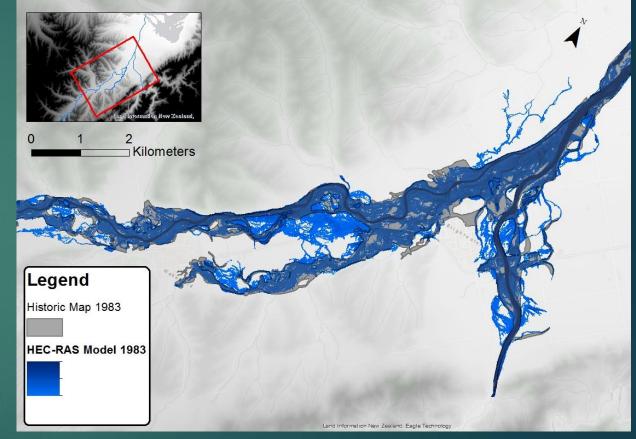
THOMAS WALLACE

Background

- Floods are New Zealand's most frequent and damaging natural event
- Currently no nationwide standard for flood protection
- Undocumented stopbanks not subjected to formal design, consents, or maintenance
- Currently thought to pose a significant and unassessed impact on flood routing
- TDC undocumented stopbanks: Main Spring Grove, Pitfure, Confluence

Waimea Floodplain

Objectives


Create a data set of characteristics of the undocumented stopbanks and integrate this with the Tasman's stopbank inventory

Create a computational flood model to carry out flood assessments to determine the impact of the undocumented stopbanks

Scenario	Definition	Documented	MSG	Pitfure	Confluence
D1U1	All stopbanks present	\checkmark	\checkmark	\checkmark	\checkmark
DOUO	All stopbanks removed	_	-	-	
D1U0	Documented stopbanks are removed	-	\checkmark	\checkmark	\checkmark
MSG0	MSG stopbank is removed	\checkmark	-	\checkmark	\checkmark
Pit0	Pitfure stopbank is removed	\checkmark	\checkmark	-	\checkmark
Con0	Confluence stopbank is removed	\checkmark	\checkmark	\checkmark	-
MSGR	MSG stopbank is modified	\checkmark	\checkmark	\checkmark	\checkmark
PitR	Pitfure stopbank is modified	\checkmark	√	くく	\checkmark

Methods

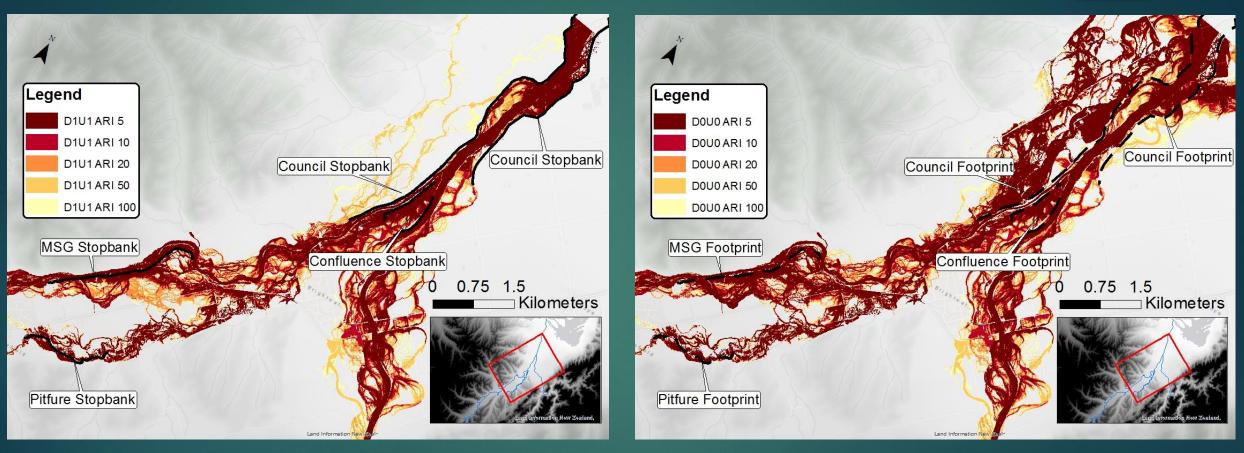
- ► HEC-RAS full 2D modelling
- 2016 LiDAR with 2016 interpolated cross section bathymetry
- Ungauged tributaries estimated with TM61
- 2012 LCDB for land use
- Calibrated against 1983 flood event
- Validated against 2011,1982,1980 events

Calibrated model against historic flood map

Condition Assessment

	Height (m)	Cover	Significant Issues		
Council	2.6	Grasses	-		
MSG	1.2/2.6	Grasses/ Impenetrable	Woody Vegetation		
Pitfure West	1.0	Woody Vegetation	Woody Vegetation, Decayed Roots		
Pitfure East	1.0	Grasses	Erosion of Banks		
Confluence Wai-iti	1.5	Scrub	Access Roads		
Confluence Wairoa	1.5	Impenetrable	Woody Vegetation		

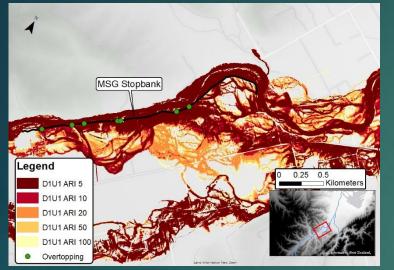
Summary of stopbank condition assessment



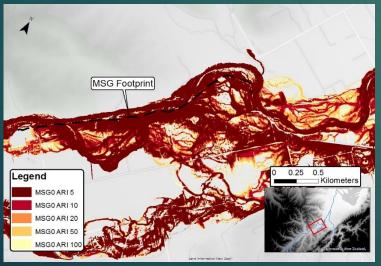
Typical Pitfure stopbank section

Typical Council stopbank section

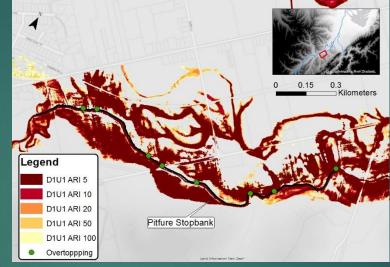
Area Inundated – D1U1 & D0U0

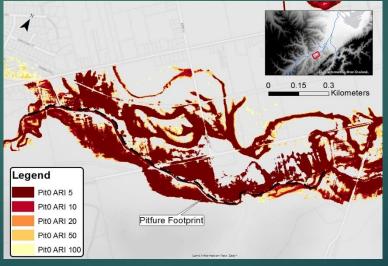


No stopbanks present

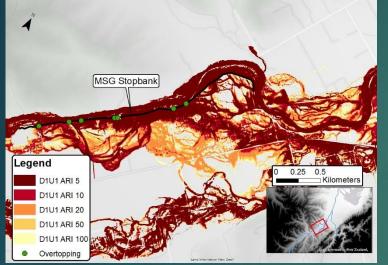

All stopbanks present

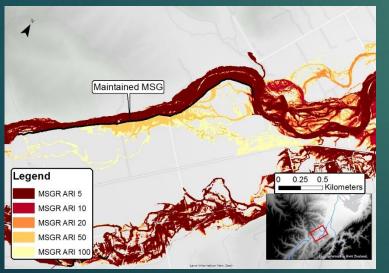
5 year event: Difference in inundation ~4.1 km²
100 year event: Difference in inundation ~5.8 km²


Area Inundated – Removal

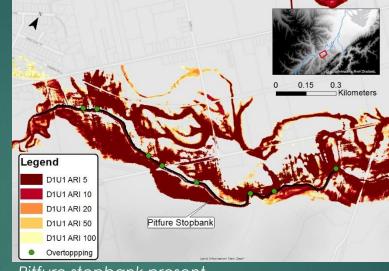

MSG stopbank present

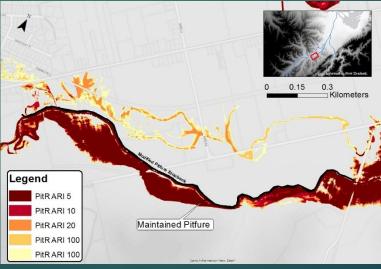
MSG stopbank removed


Pitfure stopbank present


Pitfure stopbank removed

5 year event: MSG prevents ~0.43 m² from inundation


Area Inundated – Maintained


MSG stopbank present

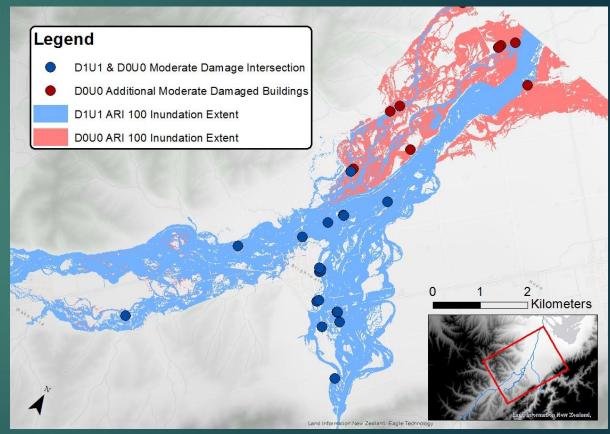
MSG stopbank modified

Pitfure stopbank present

Pitfure stopbank modified

5 year event: MSG prevents ~0.49 m² <u>Pitfure prevents</u> ~0.16 km²

100 year event: MSG prevents ~0.77 km² Pitfure prevents ~0.19 km²


Riskscape - Impact Assessment

- Riskscape used to quantify the damage/human displacement/reinstallment cost to buildings
- A major limitation is Riskscape is that its only considered buildings
 - Currently no quantification of damage to paddocks, bridges, road

Riskscape – D0U0 & D1U1

- Overall increase of moderately damaged buildings of 13 (all stopbanks: 30 buildings)
- Overall increase of building reinstallment cost of \$1.3 million (all stopbanks: \$8.7 million)
- These are located mostly west of the council stopbanks

Total Building Damages - ARI 100				
		D1U1	DOUO	
Damage Bracket	Up to \$50,000	\$380,000	\$530,000	
	Up to \$100,000	\$300,000	\$600,000	
	Up to \$200,000	\$1,100,000	\$1,500,000	
	Up to \$500,000	\$5,200,000	\$5,900,000	
	Up to \$1,000,000	\$1,700,000	\$1,700,000	
	Over \$1,000,000	C	0	

Moderately damage buildings: 100 year event

Riskscape - Removal

- Building damage/costs are the same when all stopbanks are present despite increase in inundation area
- Stopbanks are flawed, both the stopbanks have undulations that allow water to pass through
- Highlights the importance of the council stopbanks

Riskscape - Maintained

- Building damage/costs are the same when undocumented stopbanks are maintained despite reduction in area (0.77 km² MSG 100 year event)
 - Area affected has a low density of buildings
- Stopbanks were built in 1980s, land cover has changed, more vineyards/orchards

100 Year Event	1996		2012			
LCDB	Area (Km ²)	Area Percentage (%)	Area (Km²)	Area Percentage (%)	Percent Change (%)	
Orchard, Vineyard	1.9	10.5	2.8	15.8		+5.3
Township	0.3	1.6	0.4	2.4		+0.8
Short-rotation						
Cropland	0.9	5.0	1.0	5.8		+0.8
Paddock	12.0	67.2	10.7	60.0		-7.2
Total		17.8				

- Again, only damage to buildings was considered for impact assessment
- Any suggestions to quantify the loss to these is appreciated

Questions?