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Project Milestones

NZ Electricity Distribution Network Resilience
Assessment and Restoration Models following
Major Natural Disturbance

Nov 2017 to May 2018 % Hazard mapping to Infrastructure Impact
Apr 2018 to Mar 2019 % Communication Infrastructure Provisions
Jun 2017 to June 2019 % Simulation, Design and Testing for Micro-grid operation of West Coast

May 2018 to Sept 2019 % Resilient energy-communication Utility Service Framework
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Milestone 1-Hazard Mapping
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Milestone 1-Methodology
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Milestone 1 - Possible trajectories
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Milestone 1 - Examples of Possible Outcomes
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Milestone 1: Agreed Scenario

A 4

Stage 1: Initial Assessment
»  Line Patrol

POWER

2

OUTAGE

«  Damage Assessment
»  Component Status

A\ 4

Stage 2: Network Repairs
*  Crew Availability

\ 4 A 4

*  Vehicle Routing
*  Mutual assistance

A\ 4

A\ 4

Stage 2: Islanding

Blackstart Planned
Transitional

Stage 3: Network Re-energisation
*  Network energisation
*  Load Pick-up

Y

Stage 3: Resynchronization




Recap — NZ Electrical Power System

- Local genoration

Direct consumeg

&=

Generation Transmission Distribution Consumers
TRANSPOWER

Transmission Line

NEW ZEALAND'S ELECTRICITY

GENERATION (12 menths to Nov 2014) =0--0l;::t:n Vettago
Hydro 59.6% “eaky
Geothermal 16.3% e S
Gas 15.8% : &i‘:a

® Cou

Wind 4.6% ® vicod
Coal 3.0%
Wood 0.7%
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Recap - Power System Variables

* \oltage: 415V, 11KV, 33KV, 66KV, 110KV, 220KV: Acceptable Limits 0.95-1.05
» Frequency: 50Hz: Acceptable Limits 48.5-51.5Hz

Frequency: Generation = Demand

Nominal
Variation frequency Load
increase High | Low management
r = r u

https://www.rs.tus.ac.jp/;.kondoh/english.html
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https://www.rs.tus.ac.jp/j.kondoh/english.html
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Islanding
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+ Islanding: Condition in which a section of
the grid (transmission or distribution) is
energized and  operational,  whilst
disconnected from the main grid
(transmission or distribution). Generston  Jranamission

 Formation of islands
» Blackstart - Re-energization of
components
» Transitional — Components remain
energized after separation from the
grid.

 Blackstart Islanding is preferred n case of o =
disasters as damage assessment is required A=)
to determine status of network components S
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Westpower: SouthWestland Network

Power Station Power Capacity (MW) Blackstart Capability
McKays Creek 1.1 No ATARAL SWITCHRNG i o
Kaniere Forks 0.5 No
Amethyst 7.4 Yes D] i (@)sww
arua0) _Q_‘m-'%
Wahapo 3.1 Yes <D ry i
GREYMOUTH i KUMARA _ —r’
GYMOGE U0 G ) wmw
Fox 0.5 No l—:|—<n—-l‘~
Two Mie i l AT HURS PASS
sllol o
Zone Substations Peak Demand (MW) o = couro
Hokitika* 19.576 ey <
‘\_/Ilw
Ross 0.500
Waitaha 0.350
- LEGE
Hari Hari 0.980 'C"; —
Wahapo 0.100 (S —
Whataroa 0.782 s s
Franz Josef 2.212 GO ‘ T
Fox Glacier 1.016 : © e
-, . - - - (KUMOES) o
* Load at Hokitika is inclusive
of all the loads of the South
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Component Modelling
Generator Modelling Transformer Modelling Transmission Line Modelling
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33 kV Network Energization: Voltage

« Sequential energization of zone substation transformers and « Example: Energization of Franz Josef transformer
overhead lines. Voltages are within safe limits

Generator Terminal Voltage

Generator Terminal Voltage
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33 kV Network Energization: Frequency

* Frequency drop as a result of large transformer energization « Example: Energization of Franz Josef transformer
but within acceptable limits

50 1 Graph of Frequency against Time

Graph of Frequency against Time
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Load pickup

Load pickup Scenarios (Load size)
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Load pickup

» Different scenarios at the Hari Hari 11kV feeder .

NEW ZE
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Sequential Load Pickup

* Maximum load step: 0.5 MW
 Load composition: 75% - static, 25% - Motor

1.05 Generator Terminal Voltage 51 Frequency Response
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Transitioning to Islanding

Island Detection
Methods
Topology Based

* Island detection necessary mainly for
safety and to enable the DER to
change operating modes.

Local Methods

Remote Methods

* Amethyst uses frequency (Active

Wavelet

Time-Frequency

Power  Mismatch) change for
|S|and|ng detection. Active [ Passive } [Comrg:sr:al;atlon} [SlgnalBerc:;essng {ntelligence Basecﬂ
° 1 | /~ N\
Voltage and voltage angle will be (ot N [+ overvoltage/ ) (e Angleleference . T|medoma|n « NN
InveStlgated. Transform based Undervoltage e Slipand e Frequency Decision
Protection Acceleration domain Trees

Overfrequency/ e PLC SVM
. ;rfrr;.;f;)froTnt]Jased Underfrequency e Transfer Trip domain
* Amount of Load at Hokitika to be . Impedance * SCADA * Pattern
i ased . Detection Recognition Y,
varied. Kalman Filter Rate of Change
based g

997 THE UNIVERSITY OF
AUCKLAND
* NEW ZEAI.AND

ENGINEERING

DEPARTMENT OF ELECTRICAL,

COMPUTER, AND SOFTWARE ENGINEERING

of Frequency

Local Angle )

19



Transitioning to Islanding

Frequency (Hz)

Scenario 1: Hokitika Load — 9MW, 1.28 MVAr
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Transitioning to Islanding

Scenario 2: Hokitika Load — 4.5MW, 0.64 MVAr
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Transitioning to Islanding

Scenario 3: Hokitika Load — 0.99MW/0.14MVAr
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In summary

Westcoast Electricity Network Resilience

Blackstart
Study
Detailed
Modelling ﬁ

Protection

A Assessment
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Earthquake scenarios:

* Central Hypocenter

* Northern Hypocenter

* Southern Hypocenter

* Empirical Southern Hypocenter
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NZ Fixed Communication Infrastructure and Services

s Fibre Network

iyt Roadside
bl Cabinets
New Telecom Assets Including FTTN Cabinets

New Chorus Assets

Exchanges(CO0)
e.g Lower Hutt

Major
Exchanges
Auckland &g Wellington
Gateways
Takapuna or
Whenupai

?

Regional Backhaul
The Regional Backhaul
links the Local Exchanges

el

Southern Cross Cable

To International Markets

International Transit
International traffic is routed via the
Auckland Gateway and the southern

Core Network

Core Network
The Core Network or National Backhaul
fibre backbone links cities to the

Access Network
The Access Network Connects
a home or business to the
telecommunication equipment
location at Local Exchanges

to the Major Exchanges or

cross cable network Auckdand Gateway
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Method for Seismic Risk Analysis (SRA) and Hazard Mapping

Hazard Intensities Spectrum | | Assets Inventory ‘ Fragility Curve for Assets‘

Earthquake
Hazard Model

Algorithm
(Methama
tical
Method)

Lifeline Assets
Inventory

Seismic Risk
Analysis i-e

uantification

Seismic Risk Quantification

Vulnerability
or Fragility
curve

Geo Spatial Seismic hazard MAP for Lifeline Infrastructure
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Milestone 2:West Coast Case Study

Fragility Curves for Central Offices

Central office Failure

Bullding Structure
{Moderate Damage)

Electric Power
{Loss)

Digital Switching Board
(Dislodged)

iLoss) (Loss)

Backup Power ‘ Commercial Pewer

Fragility Curve of Communication Facilities (CO)
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CO Risk Quantification using Geo-Spatial Mapping (AF8
Empirical)

@ Chorusco

ﬂ Probability of Exceeding Damage State (dsi)

WEATRONT

Core Transport Backhaul

Regional Transport Backhaul

O Tier-3 and Tier4 Central Offices

Tier-2 Central Offices

o Tier1 Central Offices

— Radio Link
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CO Risk Quantification using Geo-Spatial Mapping
(AF8 Central)

Chorus CO

Probability of Exceeding Damage State

MMI (V)
MMI (Vi
MMI Vi)
MMI (Vi)
iX

MMI

EEEENET

Xi)

Core Transport Backhaul

MM o
O Tier-3 and Tier-4 Central Offces

MM"& o Tier-2 Central Offices
MM"’%\ o Tier-1 Central Offices

Radio Link
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CO Risk Quantification using Geo-Spatial Mapping
(AF8 Southern)

Chorus CO

Probability of Exceeding Damage Stat

EEEEEEED ﬁ @

= Seismic Intensity Legends

Core Transport Backhaul

Regional Transport Backhaul

Tier-3 and Tier-$ Central Offices

ww\
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CO Risk Quantification using Geo-Spatial Mapping
(AF8 Northern)
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Milestone 2: Summary Results

AF8 Scenario MMI Minor(ds0) [Moderate(dsl)|Extensive(ds2) | Complete(ds3) Affected Central Ofices/Telco Infrastructure
7 52% 14% 13% 0% FIG,GC,HAS, INJ,KM,MIA, MEN,WMG
Central Hypocenter 8 B6% 56% 21% 3% AU,BTN,FXR,HK,MMNA,NE,OTI,RN,RUN, WP, WAA
9 95% 80% 43% 10% DOB,GM,HRI,KUA,PAR,RS
AF8 Scenario MMI Minor{ds0) |Moderate(ds1)|Extensive(ds2) | Complete{ds3) Affected Central Ofices/Telco Infrastructure
B 7% 0% 0% 0% GC, INJ, KM, MIA, MEN, WMG
Northern Hypocenter 52% 14% 13% 0% AUBTN,DOB,GM,HK, KUA MNA,NE,OTI,PAR,RN,RUN, WP
) BB% 56% 21% 3% FXR,FIG,HAS,HRI,R5, WAA
AF8 Scenario MMI Minor(ds0) [Moderate(dsl)|Extensive(ds2) | Complete(ds3) Affected Central Ofices/Telco Infrastructure
7 52% 14% 13% 0% FIG,GC KM, MIA,MKN, WMG
Southern Hypocenter 8 BE% 56% 21% 3% AUBTN,FXR,HK,HAS, INJ,MNA,NE,OTI,RN,RUN, WP, WAA
9 95% 80% 43% 10% DOB,GM,HRI,KUA,PAR,RS
AF8 Scenario MMI Minor{ds0) |Moderate(ds1)|Extensive(ds2) | Complete{ds3) Affected Central Ofices/Telco Infrastructure
3 4% 0% 0% 0% GG, INL KM, MIA,MEN, WMG, WP
] 7% 0% 0% 0% AU,BTN,DOB,GM,MMNA,NE,PAR,RN,RUN
Empirical Southren Hypocenter 7 52% 14% 13% 0% HEK,KUA,QTI
g BE% 56% 21% 3% HAS,RS
9 95% 80% 43% 10% FXR,FIG,HRI,WAA
ENGINEERING
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Westcoast Central Offices(CO) Resilience and Availability
Quantification

Loss of CO in West Coast Availability of CO in West Coast
AF8 Scenario Number of CO impacted AF8 Scenario Network Network
Central Hypocenter MMI 7 8 Central Hypocenter MI 7 047 213
Central Hypocenter MMI 8 13 Central Hypocenter MVI 8 317 032
Central Hypocenter MMI 9 | 2 Central Hypocenter MMI3 Total Loss 0.00
Northern Hypacenter MMI 7 13 Northern Hypocenter MM 7 317 032
Northern Hypocenter MMI 8 25 Northern Hypocenter MMI 8 Total Loss 0.00
Southern Hypocenter MMI 7 6 Southern Hypocenter MM 7 032 317
Southern Hypocenter MMI 8 19 Southern Hypocenter MMI § 317 0.32
Southern Hypocenter MMI 9 25 Southern Hypocenter MMI 9 Total Loss 0.00
Empirical Southern Hypocenter MMI 7 19 Empirical Southern Hypocenter MMI 7 37 0.32
Empirical Southern Hypocenter MMI 8 21 Empirical Southern Hypocenter MMI 8 5.5 0.19
Empirical Southern Hypocenter MMI 9 25 Empirical Southern Hypocenter MMI9 Total Loss 0.00
unavailability for AF8 Scenarios Loss and Availability Quantification
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Milestone 2: Conclusion

From the above analysis, hazard mapping is important to estimate the
level of damage that can be caused by the specific disaster. The
estimation can then be used to drive policy decisions with regards to
network investments. The investments can either be in the form of
assets robustness (which has been the common practice) or re-
architecture the network topology to improve the end to end
resilience of network thus services. From West Coast Communication
infrastructure resilience assessment, it can be noted that there is a
higher risk of losing Grey Mouth (tier 2 central office) in case of Central
and Southern Hypocenter MMI9 AF8 scenarios than the other two AF8
scenarios under study.
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Differential relays have also gained a wide recogition
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Abstract—This paper presents a review of the negative
sequence-based protection relays development and their
applications on electrical power networks and discusses the
related challenges. Recent power system requires selective,
reliable, rapid fault detection and clearance mechanisms

especially for the transmission line networks, which are highly
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especially line-line faults which are considered
common events in power systems, in addition tc
advantages will be reviewed later in this paper.

1. NEGATIVE SEQUENCE PROTECTION OVERY

Negative sequence Protection (NSP) is a pro
scheme used to protect the power system element by
of necative sequence component. It was first introdi

DFIG-based Windfarm Starting Connected to a Weak Power Grid
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Abstract - Starting and energization of windfarms has
always been done under strong grid conditions. With the
increase in blackouts and desire to run parts of the system in
island mode, it is necessary to examine the starting of
windfarms under different system conditions. This work
provides an analysis into the starting of DFIG based
windfarms under weak grid conditions including using a
diesel gen-set and a hydropower plant. The starting
procedure of the DFIG based wind turbine has been explored
afterwhich multiple wind turbines have been started
simultaneously. It is assumed that the windfarm substation
will have a dump load to absorb excess power produced by

synchronization has been proposed and discussed in [11,
12]. [13] proposes the use of pre-charging resistors and
separate rectifier circuit in charging the dc link capacitor.
All of the above analysis into DFIG starting and
energisation has only been provided under normal grid
conditions. Limited work so far has provided analysis on
DFIG windfarm starting under different system conditions,
other than the normal grid condition. This analysis is
important especially in understanding the restoration
function of DFIG windfarms after a wide scale blackout.

The opronosed work throuch analvsis of individual
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