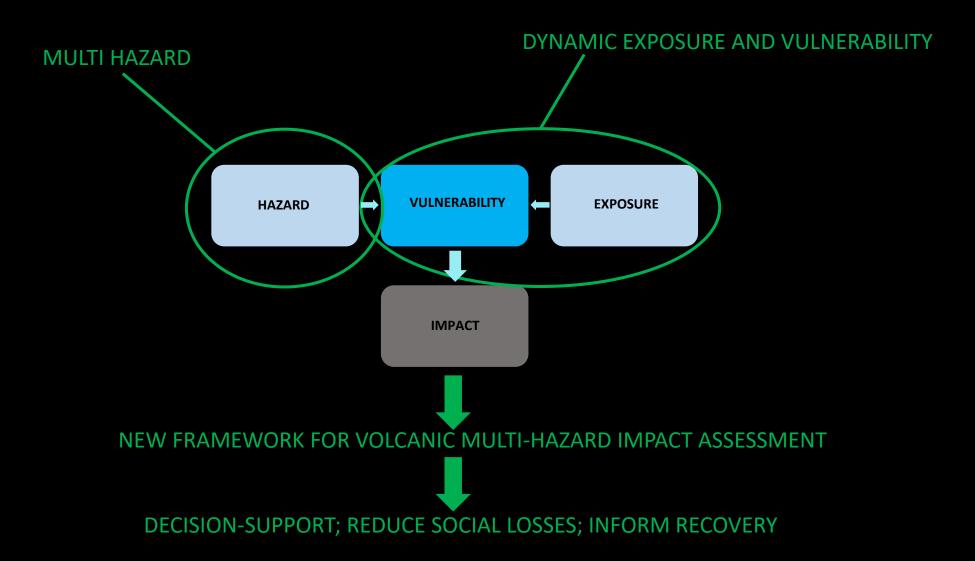

Developing a volcanic multi-hazard impact assessment framework for critical infrastructure and agricultural sectors at Mt Taranaki, NZ

Alana Weir¹, Thomas Wilson¹, Mark Bebbington², Natalia Deligne³, Sarah Beaven¹ ¹University of Canterbury; ²Massey University; ³GNS Science

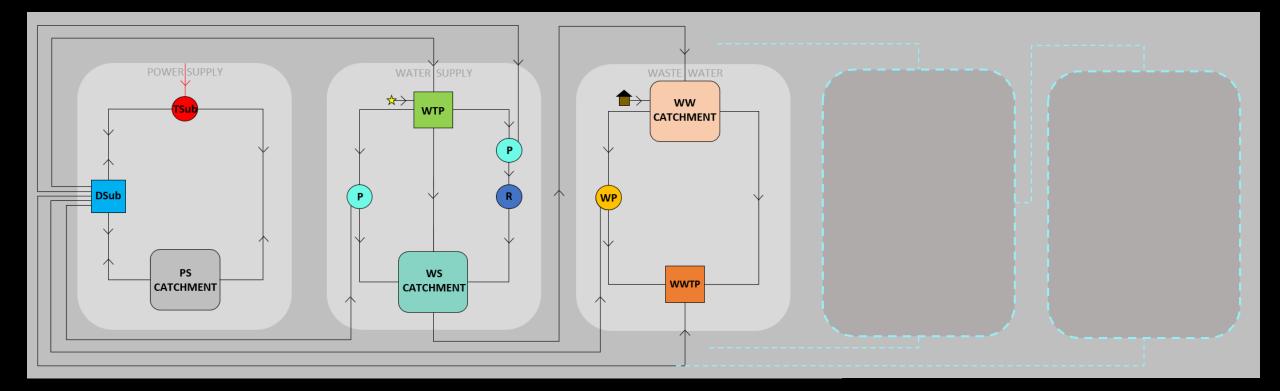
IMPACT ASSESSMENT FRAMEWORK


HAZARD VULNERABILITY EXPOSURE

IMPACT ASSESSMENT FRAMEWORK

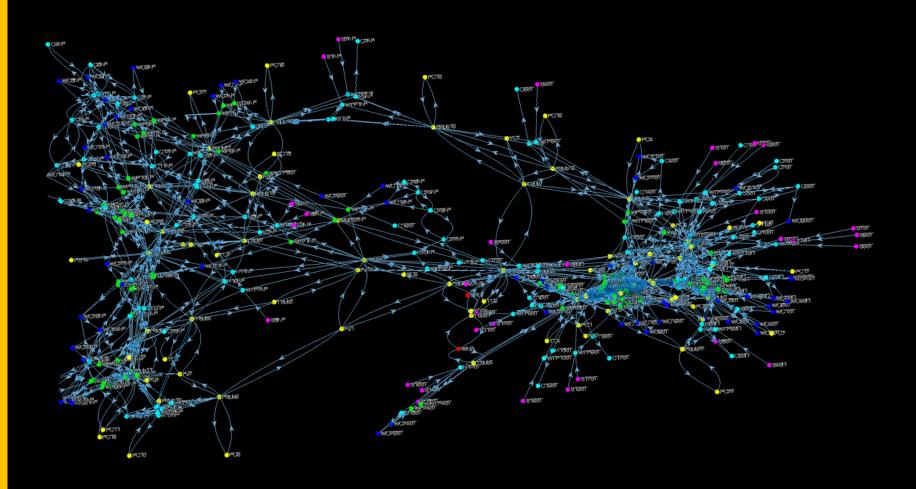
NOT FULLY REPRESENTATIVE OF POTENTIAL IMPACTS


IMPACT ASSESSMENT FRAMEWORK


PhD Objectives

- Develop a methodology to assess **dynamic exposure and vulnerability**, that accounts for the systemic impacts to critical infrastructure and agriculture
- Develop a framework to assess impacts to CI and agriculture from **volcanic multi-hazards**
- Consider the impacts to CI and agriculture from longduration, complex volcanic events
- Suggest soft and hard **mitigation measures** for preand syn- eruption
- Develop decision-support tools for emergency managers and infrastructure managers in the Taranaki region

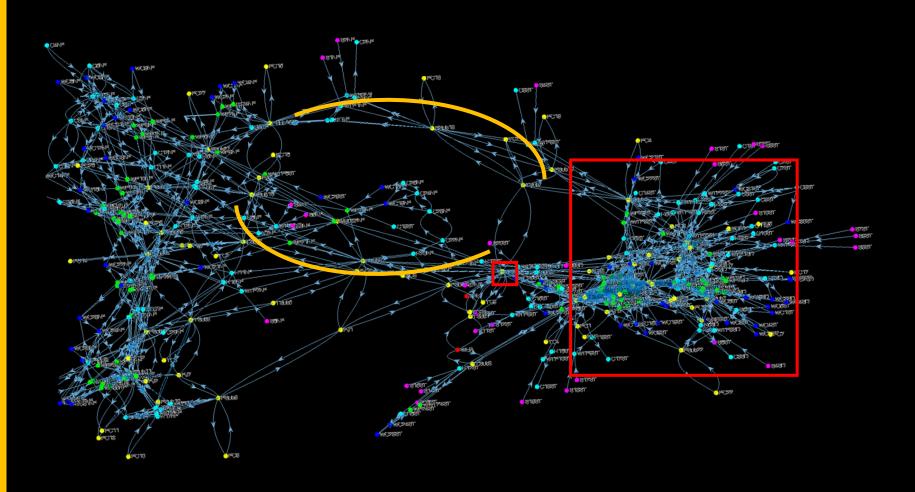
INTERDEPENDENCY MAPPING



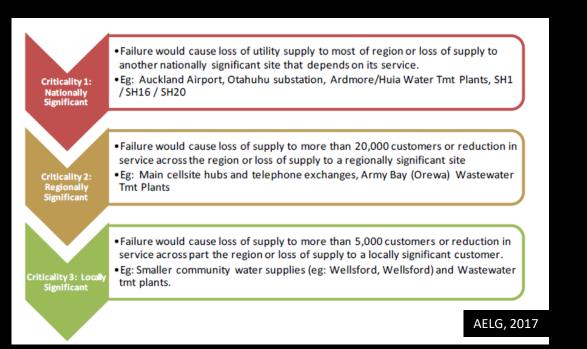
+ non-municipal supply

Nodes		Edges	S			
S1NP	1	C1SD	73	WC1SD	299	
S2NP	2	C1SD	73	WC2SD	300	
S3NP	3	C1SD	73	WC3SD	301	
S4NP	4	C1SD		WC4SD	302	
S5NP	5	C5ST	128	WC1ST	309	
S6NP	6	C5ST		WC2ST	310	
S7NP	7	C5ST	128	WC3ST	311	
R1NP	8	C5ST	128	WC4ST	312	
R2NP	9	C5ST	128	WC5ST	313	
R3NP	10	C5ST	128	WC6ST	314	
R4NP	11	C12ST	135	WC8ST	316	
R5NP	12	C12ST	135	WC17ST	325	
R6NP	13	C12ST	135	WC9ST	317	
R7NP	14	C12ST	135	WC19ST	327	
R8NP	15	C12ST	135	WC15ST	323	
R9NP	16	C12ST	135	WC14ST	322	
R10NP	17	C12ST	135	WC13ST	321	
R11NP	18	C12ST	135	WC10ST	318	
R12NP	19	C12ST	135	WC12ST	320	
R13NP	20	C12ST	135	WC11ST	319	
R14NP	21	C12ST	135	WC7ST	315	
R15NP	22	C12ST	135	WC20ST	328	
R16NP	23	C13ST	136	WC18ST	326	
R17NP	24	C13ST	136	WC16ST	324	
R18NP	25	C7ST	130	WC31ST	339	
R19NP	26	C8ST	131	WC30ST	338	
R20NP	27	C4ST	127	WC21ST	329	
R21NP	28	C4ST	127	WC22ST	330	
C1NP	29	C15ST	138	WC27ST	335	
C2NP	30	C15ST	138	WC26ST	334	
C3NP	31	C15ST	138	WC28ST	336	
C4NP	32	C15ST	138	WC25ST	333	
C5NP	33	C16ST	139	WC23ST	331	
C6NP	34	C16ST	139	WC24ST	332	
C7NP	35	C19ST	142	WC29ST	337	
C8NP	36	C25NP	53	WC18NP	245	
CONP	37	C23NP	51	WC19NP	246	
C10NP	38	C24NP	52	WC19NP	246	0
C11NP	39	C25NP	53	WC19NP	246	1
C12NP		C1NP		WC1NP	228	2
C13NP		C1NP	29	WC2NP	229	<
C14NP	42	C1NP	29	WC3NP	230	1
C15NP	43	C1NP	29	WC4NP	231	
C16NP		C3NP	31	WC6NP	233	
C17NP	45	C3NP	31	WC7NP	234	
C18NP	46	C3NP	31	WC8NP	235	
C19MP		C7NP	35	WC9NP	236	

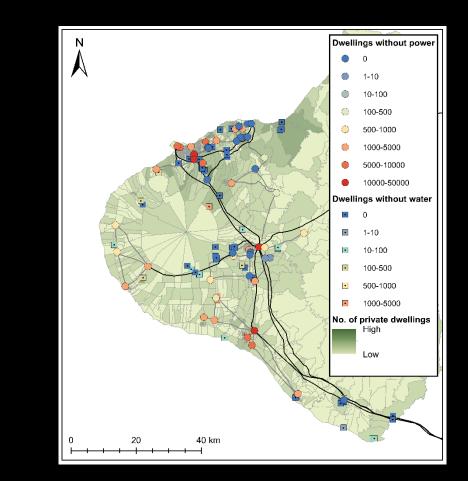
OUTAGE MODELLING


+ TRANSPORT + TELECOMMS + OIL / GAS + CRITICAL FACILITIES

Nodes		Edges	S			
S1NP	1	C1SD	73	WC1SD	299	
S2NP	2	C1SD	73	WC2SD	300	
S3NP	3	C1SD	73	WC3SD	301	
S4NP	4	C1SD		WC4SD	302	
S5NP	5	C5ST	128	WC1ST	309	
S6NP	6	C5ST		WC2ST	310	
S7NP	7	C5ST	128	WC3ST	311	
R1NP	8	C5ST	128	WC4ST	312	
R2NP	9	C5ST	128	WC5ST	313	
R3NP	10	C5ST	128	WC6ST	314	
R4NP	11	C12ST	135	WC8ST	316	
R5NP	12	C12ST	135	WC17ST	325	
R6NP	13	C12ST	135	WC9ST	317	
R7NP	14	C12ST	135	WC19ST	327	
R8NP	15	C12ST	135	WC15ST	323	
R9NP	16	C12ST	135	WC14ST	322	
R10NP	17	C12ST		WC13ST	321	
R11NP	18	C12ST	135	WC10ST	318	
R12NP	19	C12ST	135	WC12ST	320	
R13NP	20	C12ST	135	WC11ST	319	
R14NP	21	C12ST	135	WC7ST	315	
R15NP	22	C12ST	135	WC20ST	328	
R16NP	23	C13ST	136	WC18ST	326	
R17NP	24	C13ST	136	WC16ST	324	
R18NP	25	C7ST	130	WC31ST	339	
R19NP	26	C8ST	131	WC30ST	338	
R20NP	27	C4ST		WC21ST	329	
R21NP	28	C4ST		WC22ST	330	
C1NP	29	C15ST	138	WC27ST	335	
C2NP	30	C15ST	138	WC26ST	334	
C3NP	31	C15ST		WC28ST	336	
C4NP	32	C15ST	138	WC25ST	333	
C5NP	33	C16ST	139	WC23ST	331	
C6NP	34	C16ST		WC24ST	332	
C7NP	35	C19ST		WC29ST	337	
C8NP	36	C25NP	53	WC18NP	245	<
CONP	37	C23NP		WC19NP	246	SM
C10NP	38	C24NP		WC19NP	246	
C11NP	39	C25NP	53	WC19NP	246	<u> </u>
C12NP		C1NP		WC1NP	228	WW
C13NP		C1NP	29	WC2NP	229	5
C14NP		C1NP		WC3NP	230	
C15NP		C1NP		WC4NP	231	
C16NP		C3NP		WC6NP	233	
C17NP		C3NP		WC7NP	234	
C18NP		C3NP		WC8NP	235	
C19MP	47	C7NP	35	WC9NP	236	


OUTAGE MODELLING

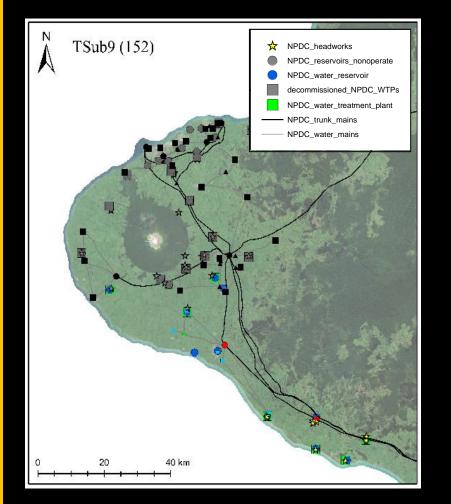
+ TRANSPORT + TELECOMMS + OIL / GAS + CRITICAL FACILITIES


CRITICALITY

CURRENT METHODOLOGY

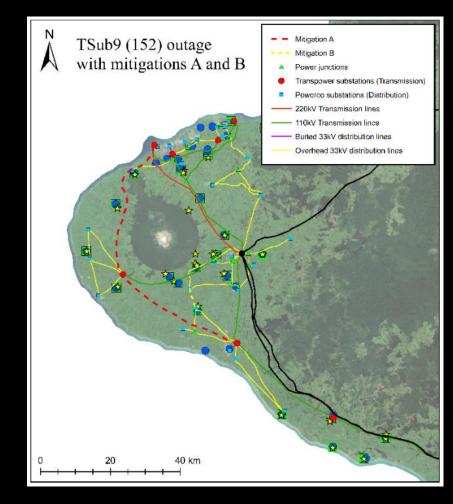
- Does not account for interdependencies
- Relies on qualitative estimations of downstream outages

NEW METHODOLOGY


+ TRANSPORT + TELECOMMS + OIL / GAS + CRITICAL FACILITIES

WS to WW and PS to WW

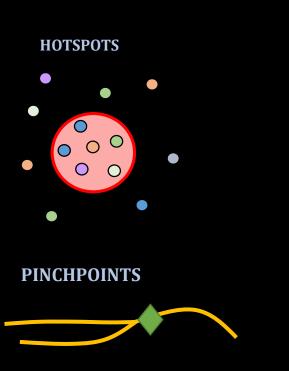
Nodes		Edges	S			
S1NP	1	XXXX	XX	XXXX	XX	
S2NP	2	XXXX	XX	XXXX	XX	
S3NP	3	XXXX	XX	XXXX	XX	
S4NP	4	XXXX	XX	XXXX	XX	
S5NP	5	XXXX	XX	XXXX	XX	
S6NP	6	C5ST	128	WC2ST	310	
S7NP	7	C5ST	128	WC3ST	311	
R1NP	8	C5ST	128	WC4ST	312	
R2NP	9	C5ST	128	WC5ST	313	
R3NP	10	C5ST	128	WC6ST	314	
R4NP	11	C12ST	135	WC8ST	316	
R5NP	12	C12ST	135	WC17ST	325	
R6NP	13	C12ST	135	WC9ST	317	
R7NP	14	C12ST	135	WC19ST	327	
R8NP	15	C12ST	135	WC15ST	323	
R9NP	16	C12ST	135	WC14ST	322	
R10NP	17	C12ST	135	WC13ST	321	
R11NP	18	C12ST	135	WC10ST	318	
R12NP	19	C12ST	135		320	
R13NP	20	C12ST	135	WC11ST	319	
R14NP	21	C12ST	135	WC7ST	315	
R15NP	22	C12ST	135	WC20ST	328	
R16NP	23	C13ST	136	WC18ST	326	
R17NP	24	C13ST	136	WC16ST	324	
R18NP	25	C7ST	130	WC31ST	339	
R19NP	26	C8ST		WC30ST	338	
R20NP	27	C4ST	127	WC21ST	329	
R21NP	28	C4ST	127		330	
C1NP	29	C15ST		WC27ST	335	
C2NP	30	C15ST		WC26ST	334	
C3NP	31	C15ST		WC28ST	336	
C4NP	32	C15ST		WC25ST	333	
C5NP	33	C16ST		WC23ST	331	
C6NP	34	C16ST	139		332	
C7NP	35	C19ST		WC29ST	337	
C8NP	36	C25NP	53	WC18NP	245	<
CONP	37	C23NP		WC19NP	246	5
C10NP	38	C24NP	52	WC19NP	246	
C11NP	39	C25NP		WC19NP	246	
C12NP	40	C1NP	29		228	24
C13NP	41	C1NP	29		229	1
C14NP	42	C1NP	29		230	
C15NP	43	C1NP	29		231	
C16NP		C3NP		WC6NP	233	
C17NP	45	C3NP		WC7NP	234	
C18NP	46	C3NP		WC8NP	235	
CHONID	47	CZND	25	LICOND	226	

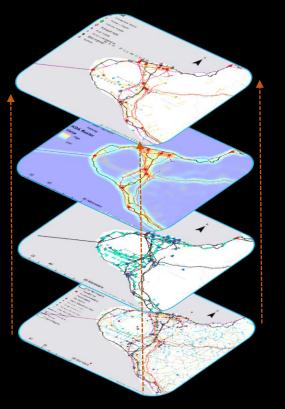

MITIGATION MEASURES

STRATFORD POWER PLANT OUTAGE NO MITIGATION

50,030 private dwelling without power28,310 private dwellings without water

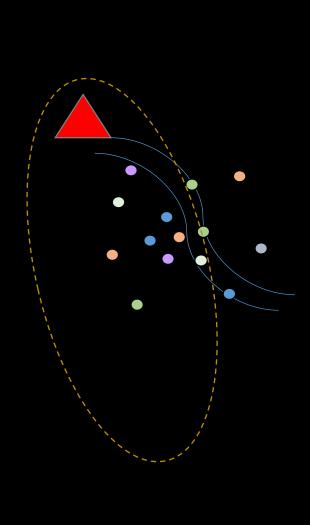
STRATFORD POWER PLANT OUTAGE + MITIGATION A and B

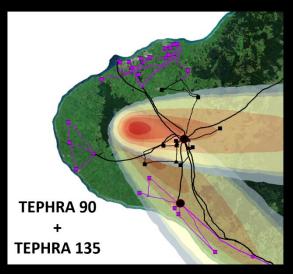


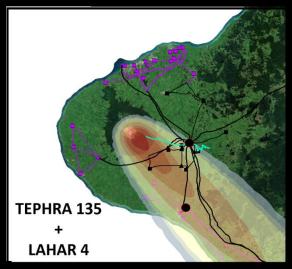

0 private dwelling without **power**0 private dwellings without **water**

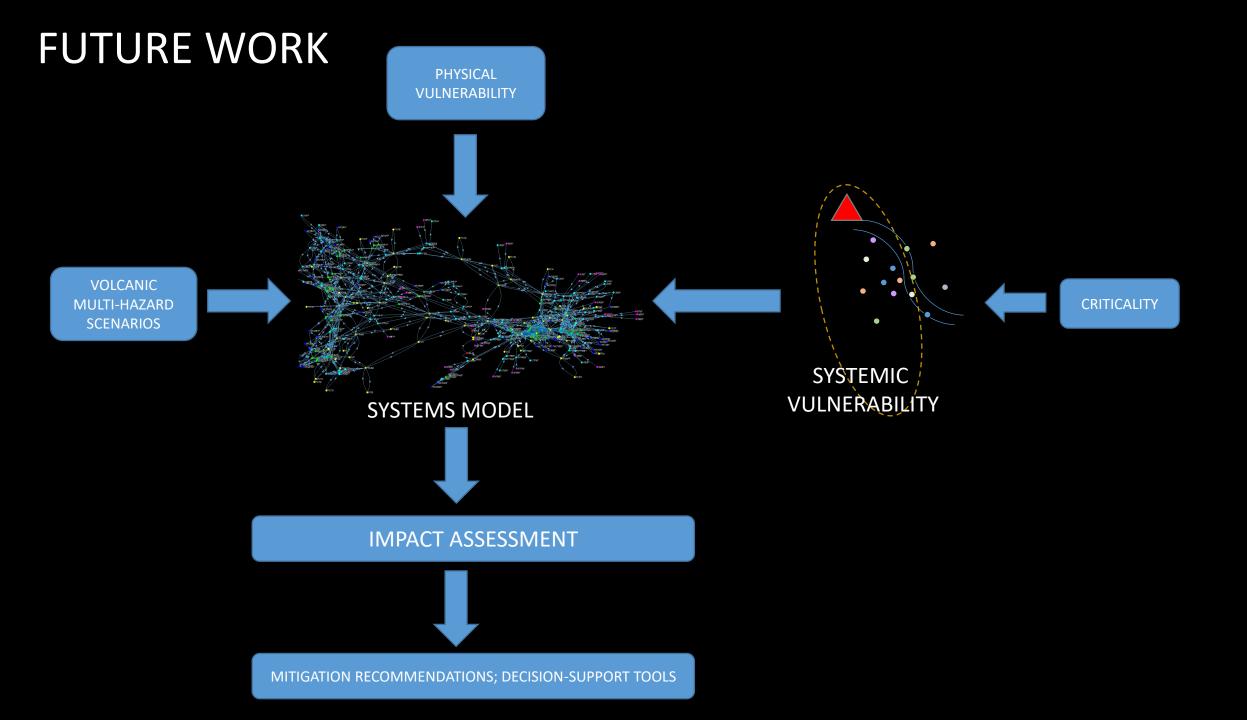
SYSTEMIC VULNERABILITY

+ MORE HAZARDS + MORE LIFELINES


CURRENT METHODOLOGY






- Is hazard independent, and therefore assumes 'point locality perturbation'
- Not representative of volcanic multi-hazard spatial extent

NEW METHODOLOGY

Thanks!

alana.weir@pg.canterbury.ac.nz Expected submission: Sept 2020

Auckland Lifelines Group. (2015). Auckland's Infrastructure Hotspots;

Jenkins SF, Magill CR, McAneney KJ (2007) Multi-stage volcanic events: A statistical investigation. J Volcanol Geotherm Res 161:275–288. doi: 10.1016/j.jvolgeores.2006.12.005;

BCIENCI

Zernack A V, Procter JN, Cronin SJ (2009) Sedimentary signatures of cyclic growth and destruction of stratovolcanoes: A case study from Mt. Taranaki, New Zealand. Sediment Geol 220:288–305; http://www.wanganuivaluer.co.nz/;

https://www.nasa.gov/content/exploring-the-worlds-protected-areas-from-space/

