3D Seismic Site Response with Soil Heterogeneity and Wave Scattering

Chris de la Torre Chris McGann Brendon Bradley

23 May, 2019

Conventional 1D Site Response Idealisations

1D = Waves propagate in only one direction (vertically)

Homogenous, horizontally layered system

Typically only SH waves (vertically propagating shear waves)

Can't capture wave scattering in 1D analysis

Reality

- Soil Heterogeneity
- 3D wavefield
- 3D soil response

Heterogeneities Cause Wave Scattering

• High frequency waves are scattered by heterogeneities

- Scattering highly dependent on:
 - Frequency content of motion
 - Length scale of heterogeneities

Sivaji et al. (2002) from Sato et al. (2012)

Site Response Methodology

• FEM analysis in OpenSees

Random Field Generation

- Anisotropic spatially correlated random field
 - Python: GSTools
- Exponential correlation function
 - von Kármán model with v = 0.5
- V_s lognormally distributed
 - + μ_{InVs} (or median $V_{S,0}$) and σ_{InVs}

Sensitivity Analysis

Parameter Name	Symbol	Values used in Sensitivity Analysis
Median Shear Wave Velocity	V _{s,0}	150, 400 m/s
Standard Deviation of In(V _s)	σ _{InVs}	0.10, 0.20, 0.35
Horizontal Correlation Length	r _{hor}	25, 50, 75, 100 m
Anisotropy Factor	a _{H/V}	1, 5, 10, 20

x 10 realisations/permutation = 960 analyses

Random Fields: Statistics and Dimensions

Input Motion: Ricker Wavelet

Response at an Individual Node

• *TF* = Average TF across all 10 realisations

Response at an Individual Node

- Reduction in peak-to-trough ratio
 - Energy redistributed across wider *f* band
 - At each Node!!!
- Reduction in TF at high frequencies
 - HF more scattered by these length scales

Average Response for Each Realisation

Average Response for Each Permutation

Frequency (Hz)

Increasing σ_{InVs} :

- Greater reduction in peak-to-trough ratio
- Greater reduction of TF at high frequencies

$$HF_{ratio} = \frac{1}{N_f} \sum_{f=5 Hz}^{20 Hz} \frac{TF_{f,2D}}{TF_{f,1D}}$$

 $HF_{ratio} = 1.0, 0.9, 0.6$ Nonlinear relationship with σ_{InVs}

Two reasons:

- Higher variance \rightarrow more wave scattering
- Node-to-node and realisation-to-realisation variability
 → More averaging or smoothing

Average Response for Each Permutation

Average Response for Each Permutation

Effects of r_{hor}

- Little effect from varying r_{hor}
- More HF attenuation with smaller r_{hor}

 $HF_{ratio} = 0.8, 0.9, 0.9, 0.9$

- 4x change in r_{hor}:
 - $HF_{ratio}: 0.9 \rightarrow 0.8$
- 3.5x change in σ_{InVs} :
 - $HF_{ratio}: 1.0 \rightarrow 0.6$

OpenSees Scalability

