

Hybrid Broadband Ground Motion Simulation Validation of Small Magnitude NZ Earthquakes using NZVM 2.0

Robin Lee¹, Brendon Bradley¹

¹University of Canterbury and QuakeCoRE

Motivation

- Validation is important to quantify predictive capability of physicsbased simulations.
- When advancements are made to simulations, need to re-validate. Previous work

Region	Velocity Model	Simulation Versions
Canterbury	• v1.66	• v17.5
		• v18.5
Current work		
• NZ	• v1.66	• v17.5
	• v2.02	• v18.5
		2

Events and Stations

- 498 earthquake events from initial set of 2268.
- Magnitudes between 3.5≤Mw ≤ 5.0.
- Minimum of 3 high-quality ground motions required per event.
- Earthquake source data obtained from GeoNet centroid moment tensor catalogue.
- 282 recording stations.

Events and Stations

- Good distribution of Mw-Rrup.
- Most earthquakes are Mw≥4.0.
- Most records have Rrup≤80km.
- Limited to earthquakes with centroid depth≤20km.

Simulation Methodology

- Widely-used Graves and Pitarka (2010,2015) hybrid approach.
- Low-frequency (LF) component (f<1Hz) from comprehensive physicsbased wave propagation.
- High-frequency (HE) component (f>1Hz) from simplified physicsbased wave propagation² (a)
 Campbell and Bozorgnia 2014 GMPE
 Campbell and Bozorgnia 2014 GMPE
- Period-dependent empirical V_{s30}-based site amplification.
- LF and HF merged to produce broadband (BB ground motion.

Individual event result:

- Christchurch event 2012p001403 -43
- Mw 4.8 located in the offshore ea
- Canterbury Basin sites match relatively well (CBGS, KPOC)
- HSES is located far away and suffers from HF path duration scaling problems (addressed with new simulation version next month).

171.5° APPS

GLWS

172.5°

LTZ

172°

WTMC

-43°

sc173°

CILC

Individual event results – Low Frequency

- Canterbury Basin sites practically no change (e.g. CBGS, KPOC).
- Hanmer Springs site HSES larger amplitudes.
- No other "new basin" site with observation but comparing the two simulations shows the same trends (larger amplitudes and basingenerated waves).

Individual event results

- Wellington event 2013p546148:
- Mw 4.2 located in Cook Strait between South Island and North Island.
- Show movie of simulation for NZVM 1.66 and 2.02.

Individual event results – Low Frequency

• Marlborough basin sites:

Individual event results – Low Frequency

• Wellington basin sites:

Results across all events and stations

- Small changes as a relatively small number of stations are in newly modelled basins.
- Also there is an ambiguous trade-off between modelling the basin and the empirical site amplification.

12

Systematic Site-to-site Residual

• Despite larger amplitudes arising from the finite difference LF simulation, application of empirical site amplification can result in larger LF amplitudes in the broadband ground motion.

Between-event residual

- Spatial variability in betweenevent residual suggests spatial variation in source characteristics not being captured.
- E.g. Spatially variable stress drop.

Systematic site-tosite residual

- Spatial variability in systematic site-to-site residual suggests site characteristics can be modelled better.
- E.g. Better velocity characterisation and treatment of site effects.
- NZVM1.66 and NZVM2.02 results similar due to basin modelling and empirical site amplification trade-off.

Further work

- More and better sedimentary basin models.
 - Geometry of basins.
 - Velocity variations within basins.
- Improved ground motion simulation version.
 - Improved HF path duration.
 - Reduce LF site amp.
 - STAY TUNED, COMING AT NEXT MONTH'S FLAGSHIP 1 MEETING.
- Consider more earthquake events, i.e. M_w 5.0-6.0.