Summary of 2019 SCEC Posters
and reflection on QuakeCoRE GMSV
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Aim

* Provide a synopsis of the 29 posters (and CVM
workshop) at the 2019 SCEC Annual meeting
related to ground motion
prediction/simulation

e Reflect on the priorities and progress of
QuakeCoRE’s efforts in FP1

* Note:

— Program at: https://www.scec.org/meetings

— PDF of posters usually available ~1 month after
meeting



Poster Summary

e 5of the 29 Presented by QC researchers!
(Sarah, Anna, Robin, Andrei, Brendon)

e Of the remaining 24:
— 2 adding new ‘enhancements’ to codes:
— 4 Gm Simulation applications
— 2 Gm Sim validation
— 4 on shallow (geotechnical) site response
— 2 Flagship SCEC projects (BBP and Cybershake)

— 3 Machine learning approaches using simulated
ground motions or hybrid empirical/simulated

— Remainder misc. topics



Gm sim applications

Rodgers et al. Hayward Fault sim on SW4 up to 10Hz via 3D
calculation (no ‘HF’ method) [200B grid points]

Results broadly consistent
with NGA-W2 methods
(minimum Vs=500m/s, no
nonlinear soil response)

This LLNL project is focused
on pushing calculations to
Exa-scale — Art openly
mentions that they don’t
realistically believe that
they can resolve the fault or
crustal structure at the
length scale of 10Hz (yet)

Hayward Fault Earthquake Ground Motion Simulations on GPU-Accelerated Platforms with SW4-RAJA

Arthur Rodgers, Ramesh Bjorn Sjog: N. Anders Arben Pltarka
Lawrence Livenmors Nationa! Laboratory, Livermore, CA, USA
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Gm sim validation (1 of 2)

* Graves, 3D sims vs. obs in Ridgecrest

° : )
M atc h too b S.0 k 3D Ground Motion Simulations for Small to Moderate Magnitude Events in the Ridgecrest Sequence _ PR

for f<0.3Hz, but o
cant match f>0.3Hz

 Considered
perturbing VM and
introducing softer
Vs near surface

Objectives Ridgecrest Sequence Study Area Ridgecrest Area Ground Motions (R < 25 km)

Examine adequacy of SCEC 30 Cormmunity Vielocity Modals [CVMz) to model 102 1-ok -
near-faull. low frequency (f < 1 Hz) ground motons in the Ridgecrest ama 7 7 T S e 5

Exgplore possible refnamarnts 1o the models In order 1o improve heir atxlity to fit
the observed molkns

Approach

+ Compare simulated and recoeded ground motions far & MS.4 evert for sites
within 35 km of epicanter
Simulations bee TYM-H, CYM-S4 28M01 (CVM-SI}, and & modified varson of
CVIA-Si fhat incldes a near-surface taper and stcchastic perturtations

+  Threecomponant wavelorns are visualy compared In threa frequency bancs

f<O03Mz f<D5Hzandf<10HL

Results

* Wawedorms at most #1es e matched reasonatly wall at1 < 0.3 Hz foe sl CVMs
the nolabie axceptions ane sitas SRT and TOW2, which are located near the
Yown of Rids

Wavetorms at SRT and TOW2 (and 12 8 lessar axiant WRC2) axhitit large
ampitude arrvals following the drect waves which are indicative of basn
response

+ ALhghe frequencies the fil to the cbsenastons degrades for af CViMs

«  Adding & velocity tapar and stochastic perturbations 1o CVM-St slightly improves
ha ft %o the basin siies; howewer, Il cannot reprocuce the late amriving waves.

+ The sirengeh and duration of e laler arivals suggests hat & shamer
Lasinbearock intorfcs is noeded in order (o generate the basn surface waves
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Gm sim validation (2 of 2)

Lai et al. Sim vs. Obs for two events in LA Basin

Mw3 events in Westwood and
Beverly Hills

Considered CVM-S and CVM-H
velocity models (base)

CVM-S: Does not lead to basin
wave reverberation (‘basin-
edge’ is too smooth)

CVM-H: Amplitudes of direct
arrivals too large, but basin-
edge waves too small also.

Highlight the issues with these
models at freq. greater than
they were developed for
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SCEC Cybershake

Callaghan et al.

CSv18.8 in Northern
California, essentially run the
GP10 hybrid method at

f max=1Hz.

~400k ruptures, ~800 sites

Largest to date (~250M core- |
hours; n.b. QC has access to |
~2 Million core-hours/year)

See May 2018 GMSV call for
technical comparison of QC
vs. SCEC Cybershake efforts




Shallow geotechnical response

Shi and Asimaki site response method for BB simulations
based on Vs30 / Z1.0 (vs. GMM-based Vs30 amplification)

They present the
theoretical benefits. Time
domain, so can include site
response effects on
duration etc also.

Has not been used in
validation studies to date

Obvious thing to consider
for NZ-based GM sim work




Machine Learning applications

Klimasewki et al. compared traditional GMM (parametric) with

Neural Net for fitting to empirical data

Find similar standard bl
deviation in residuals sackground and Motivation SRR

+ Randomly spit data ino 60% training, 20% validation, and 20% testing »

Model Performance

10 parameterize the Sourca, path, 8nd 586

i
+ Machine leaming techniques, wh h are becoming increasingly popular, allow - Create sach model with traning data. C
. far hulty data dreven me uming a functional farm: - Pick the best architecture/parameters with validabion data
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Machine Learning applications

* Withers et al. Single hidden layer NN to develop an empirical
model based on simulated data.

Relative to the
previous example,
more promise here
because you can have

~unlimited simulation
data

Can develop surrogate
model for us in real-
time applications, or
consideration of
distributed seismicity
in hazard calculations
(too many sources to
simulate all via physics-
based sims)

T Approach and Methodology

A Machine Learning Approach to Developing Ground Motion Models from Simulated Ground Motions

Kyle Withers (kwithers@usgs.gov), Morgan Moschetti (mmoschetti@usgs.gov), and Eric Thompson (emthompson@usgs.gov |

Abstract

The USGS Is working towards incorporating reginally specic seismic analyses
into the U.S, National Seismic Hazans Model. nu"::.;. dataset of ground mo-
tons generated from simulstions can serve to supplement ampincal data in

ground mation trends must follow, potentially biasing ground mation madels
{GMMs]. One approach to mplemanting synthatic infsemation ints GMMs is fo
use simulated ground motions to bud a GMM for contain distancelperiodimagni
tude ranges. This technique may aiso constraim GMMs oascured by the largs
mumhmmmhmuwmwmmammmm
hetic data are accurate, however, it must first be validated with empincal data.
Here, we combine the ground motions from the SCEC's CyberShake study to
bulld a database of ground motion melrics. We aisa calculate additionsl parame-
fees that may halp 1o better describe ground motions trends, Le. the basin-edps.
drstance and directivity parameters based on fault findeness. We use an atitcal
neural natwork to estimate the weights and coefficients that ft the data, with sev-
eral fomwiations of npul parametars. We find that a machine leamt GMM ts the
data with much (0.1-0.3 log units) lower variabiity than empirical rela-
fions, This is expected, as the synthesic simulaticas don't induds the full com-
ploxity of site and path effects ground motions experience. When appiyng our
modal {simply a table of coeficients as & function af peried) o the gicbal PEER
dataset across the same magnilude, distance, and penod range usad {o train our
modal, we find similar values of total variability lo GMMs developed fram the
PEER database. Furthermuore, we Include source and site location in e neural
network 1o develop # regicnal model, specific to Southern Catfornia, that impkc-
Ity Inchudes path and site effects. Although thers are faw records in this region,

* we find reduced uncertainty, particulady at longer perods, where directivity and
“path effects dominate. We highlight ths as motivation 1o continus 1o Simulate
ground motions across a wider range of magniludes and site effacts, in ordar to
better resoiva frends in the data.
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Reflections on QuakeCoRE GMSV activities



Spectrum of research

Ground motion modelling Engineering utilization

I
: Use in
_ I outreach and
Veloujcy : Major case studies
modelling l Scenario Egs
. Ground
Site response Broadband sim Motion o
& topo effects methods Simulation P'rOb.abIhStIC
Seismic Hazard
Analysis
Kinematic
rupture models
Use of simulations in
Comparison w Comparison w engineering design
historic Egs empirical

models/GMPEs
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Take-away sentiments (my own biased views)

* Access to computing

— More than 50x greater capacity in US — no point trying to undertake bleeding-
edge sims at high f.

— Advances in theory will generalise to global application, so we can reap
benefits from intl. colleagues.

Validation (‘formal’, not simply GMM comp.)

— QC’s thinking is significantly more advanced wrt validation (considering ~600
events in NZ so far, vs. a handful of events in California). Many comments of
‘veah, we should be doing this’

— This is a strategic advantage to continue to focus on, and also the principal
hurdle for demonstration of practical utility to enable widespread adoption

— Validation also suggests that for f>1Hz, 3D-based calculations can still not yet
reliably outperform 1D-based simplified approaches

Shallow site response

— SCEC emphasis on this increasing. Several ‘simplified” approaches (Shi and
Asimaki) useful to consider for NZ applications.

Machine Learning

— Main benefit to be gained based on training using simulation data and then
using as a surrogate model for a multitude of applications




