Summary of 2019 SCEC Posters and reflection on QuakeCoRE GMSV

Aim

- Provide a synopsis of the 29 posters (and CVM workshop) at the 2019 SCEC Annual meeting related to ground motion prediction/simulation
- Reflect on the priorities and progress of QuakeCoRE's efforts in FP1

- Note:
 - Program at: <u>https://www.scec.org/meetings</u>
 - PDF of posters usually available ~1 month after meeting

Poster Summary

- 5 of the 29 Presented by QC researchers! (Sarah, Anna, Robin, Andrei, Brendon)
- Of the remaining 24:
 - 2 adding new 'enhancements' to codes:
 - 4 Gm Simulation applications
 - 2 Gm Sim validation
 - 4 on shallow (geotechnical) site response
 - 2 Flagship SCEC projects (BBP and Cybershake)
 - 3 Machine learning approaches using simulated ground motions or hybrid empirical/simulated
 - Remainder misc. topics

Gm sim applications

- Rodgers et al. Hayward Fault sim on SW4 up to 10Hz via 3D calculation (no 'HF' method) [200B grid points]
- Results broadly consistent with NGA-W2 methods (minimum Vs=500m/s, <u>no</u> <u>nonlinear</u> soil response)
- This LLNL project is focused on pushing calculations to Exa-scale – Art openly mentions that they don't realistically believe that they can resolve the fault or crustal structure at the length scale of 10Hz (yet)

Gm sim validation (1 of 2)

- Graves, 3D sims vs. obs in Ridgecrest
- Match to obs. ok for f<0.3Hz, but cant match f>0.3Hz
- Considered perturbing VM and introducing softer Vs near surface
- Latter leads to increasing compatibility, suggesting that the current VMs are too stiff in the near surface

Gm sim validation (2 of 2)

- Lai et al. Sim vs. Obs for two events in LA Basin
- Mw3 events in Westwood and Beverly Hills
- Considered CVM-S and CVM-H velocity models (base)
- CVM-S: Does not lead to basin wave reverberation ('basinedge' is too smooth)
 CVM-H: Amplitudes of direct arrivals too large, but basinedge waves too small also.
- Highlight the issues with these models at freq. greater than they were developed for

SCEC Cybershake

- Callaghan et al.
- CS v18.8 in Northern California, essentially run the GP10 hybrid method at f_max=1Hz.
- ~400k ruptures, ~800 sites
- Largest to date (~250M corehours; n.b. QC has access to ~2 Million core-hours/year)
- See May 2018 GMSV call for technical comparison of QC vs. SCEC Cybershake efforts

Shallow geotechnical response

- Shi and Asimaki site response method for BB simulations based on Vs30 / Z1.0 (vs. GMM-based Vs30 amplification)
- They present the theoretical benefits. Time domain, so can include site response effects on duration etc also.
- Has not been used in validation studies to date
- Obvious thing to consider for NZ-based GM sim work

Machine Learning applications

- Klimasewki et al. compared traditional GMM (parametric) with Neural Net for fitting to empirical data
- Find similar standard deviation in residuals
- i.e. NNet does not lead to lower residuals
- Also, Nnet will not extrapolate beyond the data as well (as compared to traditional model were functional form can be 'set' based on theoretical guidance)
- Conclusion: ML directly with empirical data not fruitful (until several orders of magnitude more data)

Machine Learning applications

- Withers et al. Single hidden layer NN to develop an empirical model based on simulated data.
- Relative to the previous example, more promise here because you can have ~unlimited simulation data
- Can develop surrogate model for us in realtime applications, or consideration of distributed seismicity in hazard calculations (too many sources to simulate all via physicsbased sims)

Reflections on QuakeCoRE GMSV activities

Spectrum of research

Take-away sentiments (my own biased views)

- Access to computing
 - More than 50x greater capacity in US no point trying to undertake bleedingedge sims at high f.
 - Advances in theory will generalise to global application, so we can reap benefits from intl. colleagues.
- Validation ('formal', not simply GMM comp.)
 - QC's thinking is significantly more advanced wrt validation (considering ~600 events in NZ so far, vs. a handful of events in California). Many comments of 'yeah, we should be doing this'
 - This is a strategic advantage to continue to focus on, and also the principal hurdle for demonstration of practical utility to enable widespread adoption
 - Validation also suggests that for f>1Hz, 3D-based calculations can still not yet reliably outperform 1D-based simplified approaches
- Shallow site response
 - SCEC emphasis on this increasing. Several 'simplified' approaches (Shi and Asimaki) useful to consider for NZ applications.
- Machine Learning
 - Main benefit to be gained based on training using simulation data and then using as a surrogate model for a multitude of applications