
Coding standards

• Coding standards are guidelines for code style and documentation

• They may be formal PEP 8(Style Guide for Python Code) standards,
or company specific standards

Why bother with a coding standard?

• Consistency between developers
• Ease of maintenance and development
• Readability, usability, security, performance
• If you deviate from the standard for any reason, document it

“Code is read much more often than it is written"

------ Guido van Rossum

• Avoid mixing tabs and spaces, recommend using spaces
• Use 4 spaces per indentation level
• Line length <=72 chars for block comments; <= 79 chars for all other lines;

• Naming conventions:
• Modules should be all lowercase. Underscores can be used if it improves readability
• Class names should be in PascalCase (class MyClass:)
• Function names and instance variables should be lowercase with underscores as necessary
• Constants should be ALL_CAPITAL_WITH_UNDERSCORES

• Order of import statements:
1. Standard library imports.
2. Related third party imports.
3. Local application/library specific imports.
4. put a blank line between each group of imports.

PEP 8 Recommendations Highlight

Not recommended Best Practice

from qcore import geo
import os, sys
from shared_workflow import shared
from subprocess import Popen, PIPE
import vtk

import os
import sys
from subprocess import Popen, PIPE

import vtk

from qcore import geo
from shared_workflow import shared

from math import * import math or
from math import ceil

Not recommended Best Practice

if number != None: if number is not None:

if flag == True: if flag:

Bad: use global statement:
global WIDTH

Avoid or Possibly use class instead
self.width

Bad: use Magic number
fraction = available_nodes/ 264

define as a constant instead:
MAX_NODES = 264

person = {
'first': 'Tobin',
'last': 'Brown',
'age':20

}

Bad: we have to change the replacement
fields within
our string, once we add new values
print('{} {} is {} years old'.format(

person['first'],
person['last'],
person['age'])

)

print('{first} {last} is {age} years
old'.format(**person))

Output
Tobin Brown is 20 years old

Not recommended Best Practice

values = [1, 2, 3]
doubles = map(lambda x: x * 2, values)

values = [1, 2, 3]
doubles = [x * 2 for x in values]

For simple transformations that can be expressed as a list comprehension, use list
comprehensions over map() or filter(). Use map() or filter() for expressions that are too
long or complicated to express with a list comprehension.
Although a map() or filter() expression may be functionally equivalent to a
list comprehension, the list comprehension is generally more concise and easier to read.

Use comprehension for simple cases

exec
The exec statement enables you to dynamically execute arbitrary Python code which is
stored in literal strings. Building a complex string of Python code and then passing that
code to exec results in code that is hard to read and hard to test. Anytime the
use of exec error is encountered, you should go back to the code and check if there is a
clearer, more direct way to accomplish the task.

Not recommended Best Practice

s = "print(\"Hello, World!\")"
exec(s)

Output
Hello, World!

def print_hello_world():
print("Hello, World!")

print_hello_world()

Eg. In slurm_gm_workflow/install.py, this statement needs fixing, as it's hard to find what
params it imports, would they have naming conflicts with the variables inside the current
script etc.

Comments

• Comments at top to describe the purpose of a script
• Comments to describe the purpose and params of

function

• Comments to describe what does this line of code do, so
it's easier to track back and for others to understand

• Decide a docstring style
• Comment clearly in the right place
• Update comments when codes changes

Good examples:

Documentation

Codes are easy to forget

Use UC wiki to document necessary projects: what it is, how to use etc. Include examples!

Auto Coding format – Black

• Coding style is a strict subset of PEP 8
Note the line length in Black is default to 88.
To reset, use option --line-length 79

• Really useful in a team, save time and money
You will have fewer discussions on where spaces should be,
where a new line should be inserted etc and faster pull request processes.

https://github.com/ambv/black

Summary

Comply with PEP8
Find a standard that suits our projects and stick to it

Further readings

https://www.python.org/dev/peps/pep-0008/

http://google.github.io/styleguide/pyguide.html

http://docs.quantifiedcode.com/python-anti-patterns/

https://www.python.org/dev/peps/pep-0008/
http://google.github.io/styleguide/pyguide.html
http://docs.quantifiedcode.com/python-anti-patterns/

