
Under the hood of 
the automated 
workflow



The workflow
● Installation
● Queue monitor
● Auto submit
● Automated wrapper

Queue monitor

Installation

Auto submit

Automated wrapper



Terminology
● Simulation:

– The entire collection of realisations and the tasks to 
run on them

● Realisation (or rel):
– An instance of a fault with its own SRF and stoch file

● Task
– A block of work within the workflow pipeline of a 

realisation. E.G. HF, EMOD3D, BB



Installation
● Installation takes a list of faults and realisation counts, as well 

as a Data directory containing Sources and VMs for each fault

● Sources contains SRFs and Stoch files

– Possibly also sim_params if perterbations have been used

● For each fault a fault directory is created, and for each 
realisation a directory is created in the relevant fault directory

● Parameter yaml files for the simulation, each fault and each 
realisation are created

● Creates a database file containing all possible realisation and 
task combinations



Simulation folder structure
● For installation to succed a 

Data directory containing 
the Sources and VMs 
directories is required

● The fault selection file 
may be here, but is not 
required

● Installation created the 
Runs directory, 
mgmt_db_queue directory 
and slurm_mgmt.db file

● Simulation root
– slurm_mgmt.db
– fault_selection.txt (optional)
– mgmt_db_queue
– Data

● Sources
– <Faults>

● SRF
● SRF and srfinfo file per realisation

● Stoch
● Stoch file per realisation

● Vms
– <Faults>

● VM data
– Runs

● <Faults>
– <Fault>_REL<realisation number>

● HF
● LF
● BB



Queue monitor
● Checks squeue for all nesi00213 users for the 

current state of submitted tasks

● Checks the mgmt folder for updates on running 
and completed tasks

● Updates the database file with the most recent 
data on these tasks

● Sleeps for 5 seconds before starting again



● If tasks have failed or are not found on squeue 
when they were last known to be running they are 
reset to be submitted again, unless they have 
failed twice already

● The database can only be editted by one program 
at a time, attempting to run run two instances of 
queue monitor at the same time may cause 
failures

● Database is sqlite as it allows for lightweight 
creation and usage for each simulation



Auto submit
● Auto submit needs the name of the current user, and 

the root of the simulation directory
● The auto submit script checks the database for tasks 

that have fulfilled dependencies

● Auto submit checks squeue and determines the 
maximum number of tasks that can be submitted

● These tasks are submitted to slurm

● Sleeps for 5 seconds before starting again

● Other arguments allow specifying maximum number 
of tasks to run per machine and how long to sleep for



● The tasks to be run default to running EMOD3D, HF, 
BB, IM_calc and clean_up for all realisations

● The tasks to be run and realisations can be 
customised

● Tasks can be specified using the flag 
‑‑task_types_to_run

● Multiple tasks can be given with this flag

● Task dependencies are automatically added

Tasks to run



Task dependencies



● The realisations that the tasks are to be run for can 
be specified using the flag ‑‑rels_to_run

● Needs to be an sqlite formatted string

– Wildcards can be used with the % character

● Only one realisation type can be given

Realisations to run



● As auto submit does not modify the database it can be 
used by multiple people on the same simulation folder

● Each user should provide a --rels_to_run that does not 
overlap with any other user to prevent race conditions

● This allows a single simulation to have more tasks 
running on Maui than a single user could have

● By default 12 tasks will be run on Maui and Mahuika 
per user

● Queue monitor should only be run once and by only 
the user who installed the simulation



Automated wrapper
● The automated wrapper creates multiple threads 

for the other scripts to run in, allowing you to run 
a cybershake with one command 

● The automated wrapper needs the name of the 
user, and a configuration file detailing which tasks 
to run for which realisations



Wrapper configuration file

EMOD3D: ALL

HF: ALL

BB: ONCE

IM_calc: ALL

clean_up: ALL

LF2BB: "%_REL03"

HF2BB: "%_REL02"

● The task type followed by which 

realisations to run on
● Task names need to match up with 

the string from qcore.constants
● Realisation keywords:

– Once: Runs for the first realisation in 

each fault (Using _RELXX naming)
– ALL: Runs for all realisations
– “” strings: Allow for custom specification, the same as auto submit

● Task dependencies are not automatically managed, you need to 
explicity state all tasks to be run



● A thread is created for queue monitor to run in.
● Queue monitor will run until all other threads complete
● A thread is also created for auto submit tasks that are 
to be run by all realisations

● The main thread runs any tasks that are to be run by a 
limited number of realisations

● Python can only run one thread at a time
● Because each script sleeps for about 5 seconds 
between each loop, allowing each thread to run while 
the others are sleeping

Threading



Automated wrapper process flow



Task submission
● When a task is selected for submission a slurm script 

must be made, or a generic one used.

● Tasks like EMOD3D, HF, BB have a template that is 
filled

● Less complicated tasks like clean_up, LF2BB and 
HF2BB use a generic script with arguments that are 
passed in

● The duration the task will take is estimated using a 
neural network



● Task duration estimation is important as an underestimate will 
cause the task to terminate before completion, while over 
estimation may cause the task to spend longer in the queue 
as shorter jobs have a higher priority

● If EMOD3D or HF terminate before completion, usually due to 
under estimating how long the will take, they are able to 
resume from a check point, reducing the number of core hours 
wasted



● If a task has a significant run time, then the number of cores 
used to run the task will be increased until the run time is 
deemed acceptable

● The current configuration for this is that jobs estimated to take 
over one hour in wall clock time will have cores added, with 
this threshold increasing as the number of core increases



Wall clock time as a function of core hours

Legend:
■ HF and BB
■ EMOD3D



● If the task is to be submitted to a different machine than the 
host then the name of the environment is passed in, and the 
slurm script is responsible for loading the environment on the 
remote machine

● Currently this only works when submititng to Mahuika from 
Maui

● As a result it is currently recommended to submit jobs from 
Maui



Logging
● All automation scripts have logging

● This provides a stored record of what occured during a 
simulation run, allowing for debugging if an error occured and 
in some cases metadata collection

● The time of the event, recording function and message are 
alway recorded

● If the message is recorded in a code section relating to a 
specific task and realisation combination they will be recorded

● If the automated wrapper script is used then the name of the 
thread making the log will be recorded

● If in doubt: Check the logs!



Future plans
● Increased efficiency with current processes
● SRF/VM generation to be added to the workflow
● Installation by auto submit
● More post processing tasks to be added
● A system to determine which machine and 

partition a task should be sent to
● Greater cross platform submission support


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

