
Some	improvements	so	far	

•  Converted	to	Python	3	
•  Code	refactoring	in	workflow/qcore	
•  Centralizing	of	constants	and	simulation	folder	structure	
•  Unit	tests	
•  Initial	End	to	End	test	
•  Environments	

HPC	Environments	
•  Usage:	

•  activate_env	/nesi/project/nesi00213/Environments/cbs51	
•  Updates	$gmsim,	$PYTHONPATH,	$CUR_ENV	
•  Activates	python	virtual	env	associated	with	environment	

•  deactivate_env	
•  Creation		

•  Simple,	/worfklow/install_workflow/create_env		env_name	config	
•  Updating	

•  Update	git	repo	as	ususal	
•  If	it’s	a	package,	install	with	pip	install	(–I)	(--no-deps)	./package	
•  Use	pip	–e	option	to	not	have	to	reinstall	during	development	(haven’t	

actually	tested	this..),	
https://pip-python3.readthedocs.io/en/latest/reference/
pip_install.html#editable-installs		

•  Note:	Path	modifications	while	in	a	python	virtual	env	are	lost	when	deactivating	
	
	

Packages	
•  Convert	repos	to	packages,	as	done	with	qcore	and	Empirical	Engine	
•  Reduces	requirement	on	$PYTHONPATH	and	other	environment	variables	

($gmsim,	$impath)	
•  Scripts	can	be	specified	in	the	setup.py,	which	means	upon	install	they	will	be	

added	to	the	$PATH	
•  Removes	the	need	for	$gmsim/bla/script.py	
•  Do	we	want	to	use	this?	
•  If	this	is	done	sufficiently,	removes	the	need	for	$gmsim	in	slurm	scripts	etc.	

•  Versioning	
•  Follow	Brendon’s	guidelines,	i.e.	year.month.minor	with	year.month	getting	

updated	for	major	versions?		
•  When	do	we	update	minor/major	version?	

•  Changelog	–	start	updating	changelog.md?	
•  Also	allows	noting	environment	changes	required	for	updating	to	specific	

version?	
•  Dependencies	across	packages,	requirements	in	setup.py		

Branching	&	EndToEnd	test	
•  Feature	branches	for	development	->	E2E	test	feature	branch	in	developer	HPC	

environment	->	PR	->	unittests	->	merge	master	->	E2E	in	master	environment	on	
HPC	(either	manually	by	developer	or	once	every	x	hours?),	ensures	that	changes	
work	with	changes	from	other	developers.	

•  Have	a	stable	branch,	to	which	master	is	released	when	it	is	deemed	stable/good	
version?	Or	use	tags	on	master	(and	create	pip	package	for	it)?	

•  Discuss?	Other	ideas?	

Misc	
•  Licenses	on	open	source	projects?	
•  Logging	of	time	spent	assisting	researchers	on	misc	stuff	(to	get	an	idea	how	much	

time	spent	on	this,	impacts	on	sprint	etc)?	
•  Single	task	to	track	time	(for	under	1	hour)	

