Some improvements so far

Converted to Python 3

Code refactoring in workflow/qcore

Centralizing of constants and simulation folder structure
Unit tests

Initial End to End test

Environments



HPC Environments

Usage:

. activate_env /nesi/project/nesi00213/Environments/cbs51
Updates Sgmsim, SPYTHONPATH, SCUR_ENV
. Activates python virtual env associated with environment

 deactivate_env

Creation

Simple, /worfklow/install_workflow/create_env env_name config

Updating

. Update git repo as ususal

. If it’s a package, install with pip install (-1) (--no-deps) ./package

. Use pip —e option to not have to reinstall during development (haven’t
actually tested this..),

https://pip-python3.readthedocs.io/en/latest/reference/
pip install.html#editable-installs

Note: Path modifications while in a python virtual env are lost when deactivating



Packages

Convert repos to packages, as done with qcore and Empirical Engine
Reduces requirement on SPYTHONPATH and other environment variables
(Sgmsim, Simpath)

Scripts can be specified in the setup.py, which means upon install they will be
added to the SPATH

* Removes the need for Sgmsim/bla/script.py

Do we want to use this?

 If this is done sufficiently, removes the need for Sgmsim in slurm scripts etc.
Versioning

* Follow Brendon’s guidelines, i.e. year.month.minor with year.month getting
updated for major versions?

* When do we update minor/major version?
 Changelog - start updating changelog.md?

e Also allows noting environment changes required for updating to specific
version?

Dependencies across packages, requirements in setup.py



Branching & EndToEnd test

Feature branches for development -> E2E test feature branch in developer HPC
environment -> PR -> unittests -> merge master -> E2E in master environment on

HPC (either manually by developer or once every x hours?), ensures that changes
work with changes from other developers.

Have a stable branch, to which master is released when it is deemed stable/good
version? Or use tags on master (and create pip package for it)?

Discuss? Other ideas?



Misc
* Licenses on open source projects?

* Logging of time spent assisting researchers on misc stuff (to get an idea how much
time spent on this, impacts on sprint etc)?

* Single task to track time (for under 1 hour)



