AuthO Flask Portal

Sung Eun Bae

Objectives

* Authentication : Login-protected contents
* Authorization: Access-level control (Devel, EA, Stable, Admin)

* Login once and give access to all products that the user is allowed to
access

* Should be easy to update the access-level of a product

* Should insulate the product development from tedious business
layer: The dev team only focus on the functionality of the product

* Should protect from cyber-attacks or unusual activities
* Cybersecurity standards compliance

Simple + Free solution : flask-login

@app.route('/login', methods=['GET', 'POST']) Views that require your users to be logged in can be decorated with the

def login(): login_required decorator:
Here we use a class of some kind to represent and validate our

client-side form data. For example, WTForms is a library that will
handle this for us, and we use a custom LoginForm to validate.
form = LoginForm()
if form.validate_on_submit():
Login and validate the user.
user should be an instance of your ‘User' class
login_user(user)

@app.route("/settings")
@login_required
def settings():

pass

When the user is ready to log out:

flask.flash('Logged in successfully.') giggigogzgéi¢;ZQOUt)
def logout():
logout_user()
return redirect(somewhere)

next = flask.request.args.get('next")
is_safe_url should check if the url is safe for redirects.

See http://flask.pocoo.org/snippets/62/ for an example.
if not is_safe_url(next):
return flask.abort(400)

return flask.redirect(next or flask.url_for('index')) * Very _Slmple and FREE
return flask.render_template('login.html', form=form) * No direct su pport for ACCGSS-level, but should be

easy enough
* But we are on our own re. all the security issues

AuthO : Commercial Solution

%? AuthO

Vo'
@ Dashboard

START ON OUR FREE PLAN j lications
Try the world'’s #1 69 Applicat

B, APIs

authentication-as-a-service) 550 egrations
platform for free! $0/ mo = Gonnections

-0 0o Universal Login
Let AuthO handle the complexities of secure authentication so

-), Users & Roles
you can focus on building your app!

START NOW & Rules

START FOR FREE AND SAVE TIME WITH AUTHO! No cred e 4% Hooks

No credit card required

7,000 free active users & unlimited logins B Muttifactor Auth

Passwordless [Emails
Lock for Web, iOS & Android Logs
Up to 2 social identity providers @ Anomaly Detection

Unlimited Serverless Rules {’} Extensions

Authorization

(O Get Support

Alternative commercial solutions?

Vof Auth0

START ON OUR FREE PLAN

okta Amazon Cognito

Simple and Secure User Sign-Up, Sign-In, and Access Control

Developer

Amazon Cognito lets you add user sign-up, sign-in, and access control to your web and $ O/m O
Priced at mobile apps quickly and easily. Amazon Cognito scales to millions of users and supports
sign-in with social identity providers, such as Facebook, Google, and Amazon, and

$1 0 0 enterprise identity providers via SAML 2.0.
per month for up to

Pricing Tier (MAUs) Price per MAU START NOW
5,000 MAUs v

First 50,000 Free
‘ S Next 50,000 $0.00550
: = Next 900,000 $0.00460 7000 M AU S
Next 9,000,000 $0.00325
Greater than 10,000,000 $0.00250

Most generous free plan, but.. Appeared best compromise
Too expensive . Grouping feature is lacking of free use cap + ease of use

* Lack of info re. Python Flask + devel. resource

integration
* Divorce from Amazon won’t be easy
(tied to Amazon IAM)

Should we use a commercial service?

* Why not? It’s still free within limit (unlikely to exceed)
* Adopting industry’s best practice

* Cloud-based : No need to worry about security updates, anomaly
detection, compliances etc.

jwt (JSON Web Token)

* Open Standard defining a compact

. Application v':v AuthO
and self-contained way for securely (Client) Authorization Server
transmitting information between Access token
parties as a JSON object.

Your API
 Digitally signed: Can be verified and (Resource Server)

trusted

 Signed with a secret or public/private
key 1. The application or client requests authorization to the authorization server. This is
performed through one of the different authorization flows. For example, a typical OpenlD
Connect compliant web application will go through the /oauth/authorize endpoint using
the authorization code flow.
2. When the authorization is granted, the authorization server returns an access token to the
application.

3. The application uses the access token to access a protected resource (like an API).

Example : Access token

Encoded PASTE A TOKEN HERE

eyJ0eXAi0iJKV1QiLCJhbGci0iJSUzITNiIsImtp
ZCI6I1FVWTFNRVEWUmMpSQO9VUTNNak@yTVRnMk5q
Z31PVVpDUWpNd1JrVKVPVFZCT1RjMU9UazNSUSJ9
.eyJpc3MiOiJodHRwczovL3N1aXNBZWNoLmF1dGg
wLmNvbS8il CJzdWIiOiJhdXRoMHw1ZDAyZmY@MmQ
2MmFmYzBjOWY5ZTgONWYilLCJhdWQiOlsiaHR@cDo
vL3N1aXNBZWNoLm56L2FwaSIsImh@dHBz0i8vc2V
pc3R1Y2guYXVBaDAuY29tL3VzZXJpbmZvIlOsIml
hdCI6MTU2MzEBODE3NCwiZXhwIjoxNTYzMjMONTc
0LCJhenAi0iI3Qk1sYVBLS1Ewd3MORMN2bk9Vbke
ybjVaWk9Ibz1lFVSIsInNjb3B1lIjoib3BlbmlkIHB
yb2ZpbGUgYWNjZXNzOmVhIGFjY2VzczpkZXZ1bCB
hY2N1c3M6YWRtaW4ifQ.fEgaYt5XSNoduy6-
hplUKB-K@2yN_V4D-
1fFx7LKETJGI2XYGtKC6DjdEN4iIU99KL6tkB36k
y5SJJUBcCPn9pBAu2m3xew6WDB8DG30gFv20mR4 -
qEvg3Xgy4QXNi9XNbSThhSmJAM_TYn10XKnGI-
xpIuifvOvHFj91D51eQySsN3HCBANtqlY5y7MQF1
vP3UKi5xQeAuPve12fsQiuQE jBOwBUBvVk-
LVM2QZNaNG2UepQ-mjladLriiPEOx-Wen-
Hc3cBudsOVASasLKnn37hQa_kUevL -
7s5TmBaS_IFn325xLyXa1RxMXXzHAH9dDj19F1Zi
pUwYl6c4YyeAg

Decoded EDIT THE PAYLOAD AND SECRET

HEADER: ALGORITHM & TOKEN TYPE
{
"typ": "JWT",
"alg": "RS256",
"kid":

“QUY1MEQ@R jRCOUQ3MjM2MTg2NjgyOUZCQjMWRKVEOTVBOTC10Tk3RQ"
}

PAYLOAD: DATA

{

"iss": "https://seistech.auth@.com/",
"sub": "auth®|5de2ff42d62afcec9f9e845f",
"aud": [

"http://seistech.nz/api",
"https://seistech.auth@.com/userinfo”
1.
"iat": 1563148174,
"exp": 1563234574,
"azp": "7BM1laPKJQ@ws4FcvnOUnM2n5ZZOHo9EU",
"scope": "openid profile access:ea access:devel
access:admin” —

VERIFY SIGNATURE

RSASHA256 (
base64UrlEncode(header) + "." +
base64UrlEncode(payload),

MIIBIjANBgkqhkiGIw@BAQEFAAOCAQ

Logged in with a “super”
user (admin, devel, ea,
stable access)

(Note: "stable” scope is not
explicitly stated. Everyone
with login already has this
access)

@flask_portal .app.route("/api/public")
def public():

[]
J W I I n F | a S k """No access token required to access this route

response = (
"Hello from a public endpoint! You don't need to be authenticated to see this."

)

return jsonify(message=response)

* Using AuthQ’s Authorization
‘ fl 1..app. routeC™/apl/private”
Extension, access-level groups were g VAT
created : admin > devel > ea def private():

"""A valid access token is required to access this route

* Lower-level access scopes are response = (
. . "Hello from a private endpoint! You need to be authenticated to see this."
automatically added to jwt)

return jsonify(message=response)

* Just add “@requires_scope(“xxx”

aﬂe . @ o Ute(/e " d pOI nt) \ @flask_portal .app.route("/api/eaonly")

@Auth.requires_scope(“"ea")
. def read_eaonly():
¢ @reqUIres_a Uth IS Imp|ICIt|y CheCked """A valid access token and an appropriate scope are required to access this route
by @reqUIreS_Scope response = "Hello!" + get_user_id() + " is authorized to read ea only contents"
return jsonify(message=response)

@flask_portal .app.route("/api/devonly")

@Auth.requires_scope(“devel")
def read_devonly():
"""A valid access token and an appropriate scope are required to access this route

response = "Hello! You are authorized to read devonly contents"
return jsonify(message=response)

@requires scope(xxx) is simple, but...

* Placing this in front of every single endpoint in a product can be tedious.
* What if the product advances to next maturity level? Should we update

@requires scope(“devel”) > @requires scope(“ea”)
for every endpoint? (of course, we don’t need to hard-code it!)

 What if different versions of one product with different maturity level need
to be accessible? eg. Disagg ver.1 is in “stable”, but Disagg ver.2 is in “ea”.

Can we just NOT worry about authentication/access-level control at the
product level?

AuthO Flask Portal

> tof Auth0 /
—— apps
—— devel
|— disagg (devel branch)
Portal L— gmsel (devel branch)
http://seistech.nz BV

— €a

|— disagg (ver.2 branch)
L gmsel (ver.l branch)

—— stable
Using jwt + scopes: no need to do @requires_scope(xxx) L— disagg (ver.l branch)

/disagg
devel

/disagg
ver2.

Stand-alone Flask appllcatlons http.//seistech.nz/apps/stable/disagg
(can develop/run by itself)

No need to do @requires scope(xxx) ?? HOW 7?7

* Suppose we have a product called “test” in “devel” stage

from flask import Flask

app = Flask(name)

@app.route ("/")
@requires_scope (“devel”)
def hello world():

return "Hello World from {}
You have {} permission to view
this page.".format (

app.import name,

app.permission

)

\AJ

if name == " main_ ":
app.run ()

from authflask import AuthFlask

app = AuthFlask(name)

ove
-
@app.route ("/")

def hello world():
return "Hello World from {}
You have {} permission to view
this page.".format (
app.import name,
app.permission

)

if name == " mailn

app.run ()

rridin

class AuthFlask (Flask):
def init (self, *args, **kwargs):

def route(self, rule, **options):
def decorator(f):
Auth.requires_scope (level) (f)

All routes defined in “test” are

automatically protected with

“devel” access-level just by

1. Placing the code in
/apps/devel subdirectory

2. Replacing Flask () with
AuthFlask()

My contribution so far

e Overall architecture : AuthFlask subclass and overriding route(),
DispatcherMiddleware

* Injecting the group info (ie. access level) into JWT scope : Despite horrendous
documentation with no example code

* Extending AuthO User DB by connecting to external User table in MariaDB

(hosted on EC2) that stays in sync with AuthO User DB (saves $SS on AuthO and
Amazon)

* Wrote a proxy layer that can interact with AuthO management API (will make business
logic related to user management very easy to implement)

* Websocket support with Flask DispatcherMiddleware : Open problem in
StackOverflow

Flexible deployment

/
— apps

—— devel
" QAUtho |— hazard (branch X)

|— disagg
L— gmsel
— hazard (branch Y)
: disa
http://seistech.nz BV ': gmse(fg
— ea
—— hazard

Using jwt + scopes: no need to do @requires_scope(xxx) ||: disagg(.)
gmse+ (not ready

Portal

/hazard/disagg ver 2 /hazard/disagg ver 1
/hazard/gmsim ver 1 fthazard/gmsimverl

/hazard/disagg ver 1
/hazard/gmsim ver 2

Even if products follow monolithic design, can still deploy them separately (can block endpoints if needed)

In action

((

SeisTech

Accelerating the development of earthquake-resilient infrastructure

(«

SeisTech

SeisTech

Don't remember your password?

LOG IN >

In action

erating the d

oarthauab-ce

((scisTech

sung.bae @canterbury.ac.nz

"User level: Almighty Admin"

Products

o admin: apps.admin.manage/
o devel
o devel
o devel
o devel
o ea:apps.ea
°

st

stable: apps.stable.test/

LOGOUT

Disaggregation
’Options

Data

Cybershake 2018.06 s

Site

Intensity Measure

pSA (5.0s) v

Exceedance

5 v 3 v

Disagg by Type Disagg by Epsilon Top Contributing Faults

15

12

% Contribution

Fault Distributed Seismicity

Download Image | Data.

Objectives

e Authentication : Login-protected contents v/
e Authorization: Access-level control (Devel, EA, Stable, Admin) v/
* Login once and give access to all products that the user has clearance

v

* Should be easy to update the access-level of a product v/

* Should insulate the product development from tedious business
layer: To focus on the functionality of the product v/

e Should protect from cyber-attacks or unusual activities v/

e Cybersecurity standards compliance v/

@requires scope(xxx) is simple, but...

* Placing this in front of every single endpoint in a product can be tedious.
* What if the product advances to next maturity level? Should we update

@requires scope(“devel”) > @requires scope(“ea”)
for every endpoint? (of course, we don’t need to hard-code it!)

 What if different versions of one product with different maturity level need
to be accessible? eg. Disagg ver.1 is in “stable”, but Disagg ver.2 is in “ea”.

Can we just NOT worry about authentication/access-level control at the
product level? VJ V

Portal
http://seistech.nz BV

Business logic
Ensemble

Project dashboard etc

