
Auth0 Flask Portal
Sung Eun Bae

Objec4ves

• Authen-ca-on : Login-protected contents
• Authoriza-on: Access-level control (Devel, EA, Stable, Admin)
• Login once and give access to all products that the user is allowed to

access
• Should be easy to update the access-level of a product
• Should insulate the product development from tedious business

layer: The dev team only focus on the func-onality of the product
• Should protect from cyber-aEacks or unusual ac-vi-es
• Cybersecurity standards compliance

Simple + Free solu4on : flask-login

• Very simple and FREE
• No direct support for Access-level, but should be

easy enough
• But we are on our own re. all the security issues

Auth0 : Commercial Solu4on

Alterna4ve commercial solu4ons?

7000 MAUs

Too expensive
Most generous free plan, but..
• Grouping feature is lacking
• Lack of info re. Python Flask

integra-on
• Divorce from Amazon won’t be easy

(-ed to Amazon IAM)

Appeared best compromise
of free use cap + ease of use
+ devel. resource

Should we use a commercial service?

• Why not? It’s s-ll free within limit (unlikely to exceed)
• Adop-ng industry’s best prac-ce
• Cloud-based : No need to worry about security updates, anomaly

detec-on, compliances etc.

jwt (JSON Web Token)

• Open Standard defining a compact
and self-contained way for securely
transmi[ng informa-on between
par-es as a JSON object.

• Digitally signed: Can be verified and
trusted

• Signed with a secret or public/private
key

Access token

Example : Access token

Logged in with a ”super”
user (admin, devel, ea,
stable access)

(Note: ”stable” scope is not
explicitly stated. Everyone
with login already has this
access)

JWT in Flask

• Using Auth0’s Authoriza-on
Extension, access-level groups were
created : admin > devel > ea

• Lower-level access scopes are
automa-cally added to jwt

• Just add “@requires_scope(“xxx”)
aeer @route(/endpoint)

• @requires_auth is implicitly checked
by @requires_scope

@requires_scope(xxx) is simple, but…

• Placing this in front of every single endpoint in a product can be tedious.
• What if the product advances to next maturity level? Should we update

@requires_scope(“devel”) à @requires_scope(“ea”)

for every endpoint? (of course, we don’t need to hard-code it!)
• What if different versions of one product with different maturity level need

to be accessible? eg. Disagg ver.1 is in “stable”, but Disagg ver.2 is in “ea”.

Can we just NOT worry about authen3ca3on/access-level control at the
product level?

/apps

Auth0 Flask Portal

Portal
h<p://seistech.nz

/devel /ea /stable

/disagg
ver2.

/disagg
devel

/disagg
ver1.

/gmsel
devel

/gmsel
ver1.

Using jwt + scopes: no need to do @requires_scope(xxx)

Receiving jwt

/
├── apps
│ ├── devel
│ │ ├── disagg (devel branch)
│ │ └── gmsel (devel branch)
│ ├── ea
│ │ ├── disagg (ver.2 branch)
│ │ └── gmsel (ver.1 branch)
│ └── stable
│ └── disagg (ver.1 branch)
│

Stand-alone Flask applica-ons
(can develop/run by itself)

h<p://seistech.nz/apps/stable/disagg

No need to do @requires_scope(xxx) ?? HOW ??

• Suppose we have a product called “test” in “devel” stage

from authflask import AuthFlask

app = AuthFlask(__name__)

@app.route("/")
def hello_world():

return "Hello World from {} :
You have {} permission to view
this page.".format(

app.import_name,
app.permission

)

if __name__ == "__main__":
app.run()

from flask import Flask

app = Flask(__name__)

@app.route("/")
@requires_scope(“devel”)
def hello_world():

return "Hello World from {} :
You have {} permission to view
this page.".format(

app.import_name,
app.permission

)

if __name__ == "__main__":
app.run()

class AuthFlask(Flask):
def __init__(self, *args, **kwargs):

...

def route(self, rule, **options):
def decorator(f):

Auth.requires_scope(level)(f)
...

overriding

All routes defined in “test” are
automa-cally protected with
“devel” access-level just by
1. Placing the code in

/apps/devel subdirectory
2. Replacing Flask() with

AuthFlask()

My contribu4on so far

• Overall architecture : AuthFlask subclass and overriding route(),
DispatcherMiddleware
• Injec-ng the group info (ie. access level) into JWT scope : Despite horrendous

documenta-on with no example code
• Extending Auth0 User DB by connec-ng to external User table in MariaDB

(hosted on EC2) that stays in sync with Auth0 User DB (saves $$$ on Auth0 and
Amazon)
• Wrote a proxy layer that can interact with Auth0 management API (will make business

logic related to user management very easy to implement)

• Websocket support with Flask DispatcherMiddleware : Open problem in
StackOverflow

/apps

Flexible deployment

Portal
h<p://seistech.nz

/devel /ea /stable

/hazard/disagg ver 2
/hazard/gmsim ver 1

Using jwt + scopes: no need to do @requires_scope(xxx)

Receiving jwt

/
├── apps
│ ├── devel
│ │ ├── hazard_(branch X)
│ │ │ ├── disagg
│ │ │ └── gmsel
│ │ ├── hazard_(branch Y)
│ │ │ ├── disagg
│ │ │ └── gmsel
│ ├── ea
│ │ ├── hazard
│ │ │ ├── disagg
│ │ │ └── gmsel (not ready)
…

Even if products follow monolithic design, can s-ll deploy them separately (can block endpoints if needed)

/hazard/disagg ver 1
/hazard/gmsim ver 1

/hazard/disagg ver 1
/hazard/gmsim ver 2

In ac4on

In ac4on

Objec4ves

• Authen-ca-on : Login-protected contents ✔
• Authoriza-on: Access-level control (Devel, EA, Stable, Admin) ✔
• Login once and give access to all products that the user has clearance
✔

• Should be easy to update the access-level of a product ✔
• Should insulate the product development from tedious business

layer: To focus on the func-onality of the product ✔
• Should protect from cyber-aEacks or unusual ac-vi-es ✔
• Cybersecurity standards compliance ✔

@requires_scope(xxx) is simple, but…

• Placing this in front of every single endpoint in a product can be tedious.
• What if the product advances to next maturity level? Should we update

@requires_scope(“devel”) à @requires_scope(“ea”)

for every endpoint? (of course, we don’t need to hard-code it!)
• What if different versions of one product with different maturity level need

to be accessible? eg. Disagg ver.1 is in “stable”, but Disagg ver.2 is in “ea”.

Can we just NOT worry about authen3ca3on/access-level control at the
product level? ✔✔✔

/apps

Next step

Portal
h<p://seistech.nz

/devel /ea /stable

Receiving jwt

Business logic
Ensemble

Project dashboard etc

