

RNC/QuakeCoRE Distributed Infrastructure

13th August2018

The Resiliency of Communication infrastructure during Alpine fault Earthquake scenarios in Westcoast, New Zealand

Draft Research Slides For Master Thesis

FARRUKH LATIF AND ANDREW AUSTIN

ENGINEERING DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Kia manawaroa – Ngā Ākina o Te Ao Tūroa

Outline

- Introduction to RNC Project
- Electricity Communication Lifeline Infrastructure Resilience

Introduction

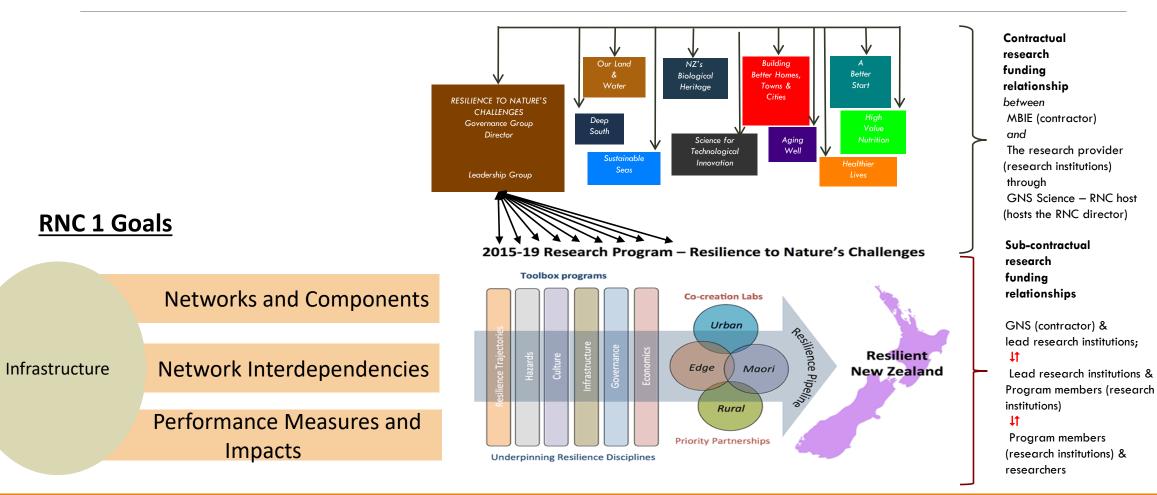
- Motivation and Background
- Why We need Resiliency for Communication Network?
- Performance of Communication Network During NZ Earthquakes- History

Research Objectives

- Communication Infrastructure and Services
- Communication Exchanges(CO) and Facilities: Critical Component For Service Delivery
- Seismic Risk Quantification for Communication Infrastructure
- Resilience in Communication Lifeline
- Resilience Strategy and Loopback Approach
- Measurement Framework for Resilient Communication Lifeline
- Time Phase of disaster and Resilient Communication Lifeline

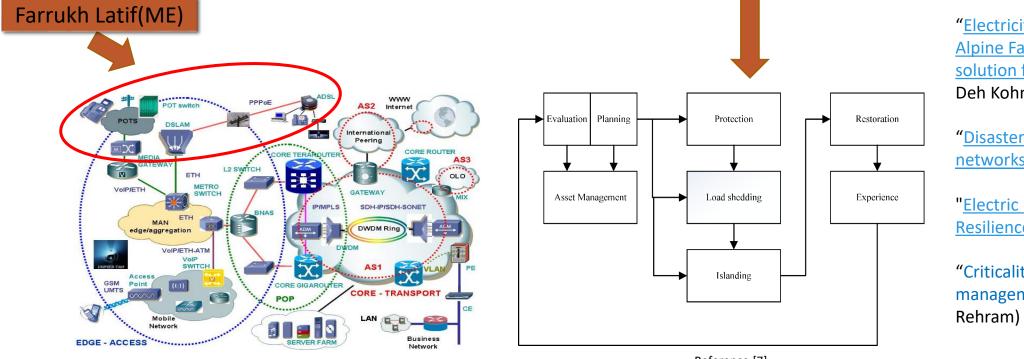
Use Case

- Approach
- References


Intestit

RESILIENCE TO NATURE'S CHALLENGES Kia manawaroa – Ngã Akina o Te Ao Tūroa

Ministry for business, innovation and employment national science challenges



Electricity- Communication Lifeline Infrastructure Resilience

Electricity-Communication Resilience through West Coast Alpine Fault Scenario

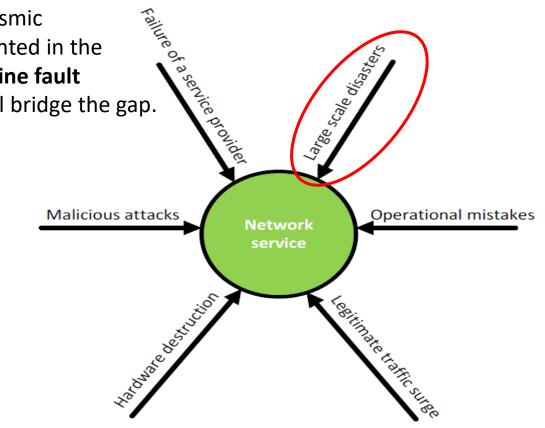
Nirmal Nair (PI), Andrew Austin (AI), Samad Shirzadi (PhD), Duncan Maina (PhD), Yang Liu (Postdoc), Daniel Blake (Postdoc), Liam Wotherspoon (RNC DI, Lead)

"<u>Electricity Network Assessment during</u> <u>Alpine Fault Event: microgrid as a</u> <u>solution for restoration</u>" (Samad Shirzadi Deh Kohneh)

"<u>Disaster related recovery of power</u> <u>networks</u>" (Duncan Maina)

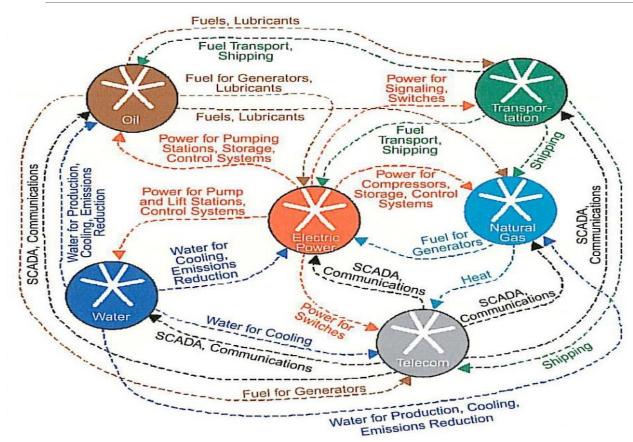
"<u>Electric Power Distribution Systems</u> <u>Resilience Modelling Toolbox</u>" (Leo Liu)

"Criticality Assessment and Asset Health management of electricity" (Ebad ur Rehram)


> Ngā Ākina o Te Ao Tūroa

Motivation and Background

In spite of the recognized critical importance, the assessment of the seismic performance for the telecommunication infrastructure is underrepresented in the literature. "The Resiliency of Communication infrastructure during Alpine fault earthquake scenarios in Westcoast, New Zealand" research project will bridge the gap.



Ngã Åkina o Te Ao Tūroa

Rationale: Why We Need Resiliency for Communication Network?

• The interdependency of other recovery mitigations (energy, transport etc.) on communications network is self-evident here.

(The key point here is – the reliance on communication technology is rapidly increasing and now the societies are highly dependent on technology than ever before).

Performance of Communication Lifeline During NZ Earthquakes in the Past

Kaikora Earthquake Damages(Courtesy of Chorus)

Ngã Ākina o Te Ao Tūroa

Research Objectives

to understand and:

Develop a seismic hazard model (using GIS tool) to quantify the risk to spatially distributed critical communication infrastructure and

This thesis will help to carry out the research on critical telecommunication infrastructure components

i) Validate Against AF8 West Coast Scenarios

Develop a Measurement framework for Resilient communication infrastructure for seismic hazards

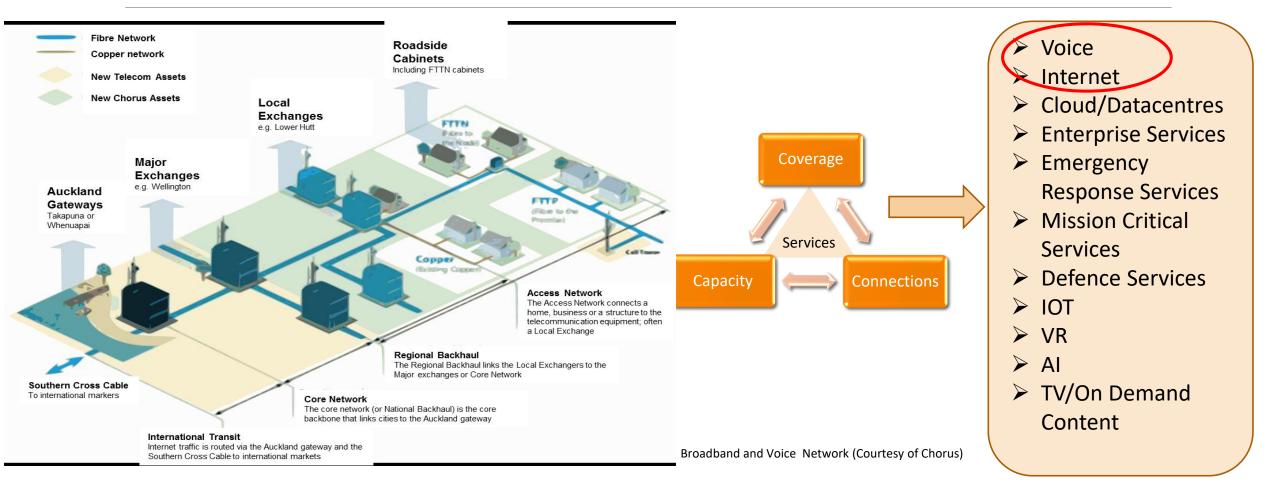
Guidelines for Future Resilient Communication Network Architecture

RESILIENCE TO NATURE'S CHALLENGES Kia manawaroa – Ngā Ākina o

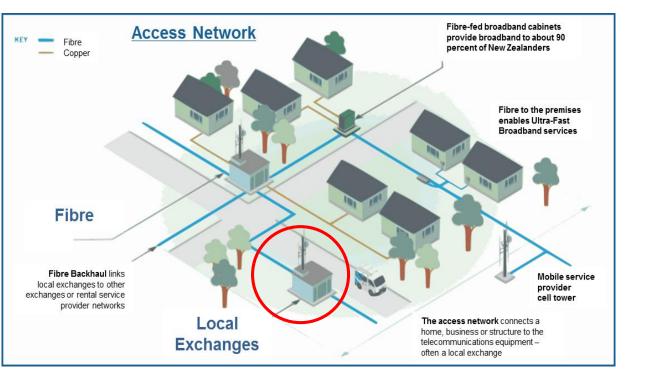
Resilience in Communication Lifeline

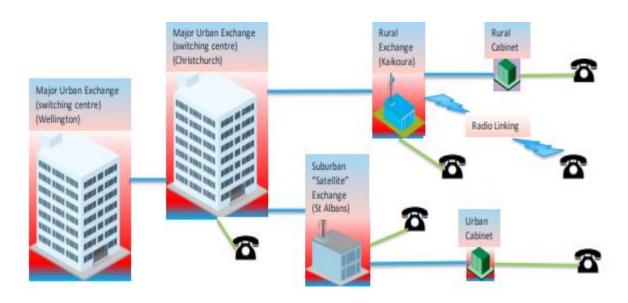
Ability of a Communication lifeline to withstand extraordinary and high impact-low probability events

Key Features:

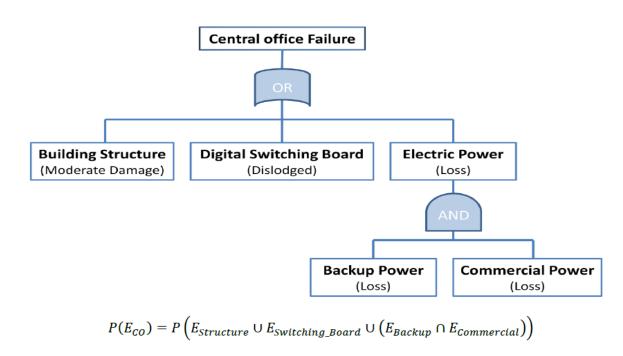

Robustness	 Keep operating or stay standing in the face of disaster Withstand low-probability but high-consequence events 	
Resourcefulness	 Effectively manage a disaster as it unfolds Identify options, prioritize what should be to control and mitigate the damage 	
Rapid Recovery	 Get things back to normal as fast as possible after a disaster Contingency plans and emergency operations 	
Adaptability	 Absorb new lessons from a catastrophe Introduce of new tools and technologies for boosting robustness, resourcefulness and recovery before the next crisis 	Reference [2]

NZ Communication Infrastructure and Services

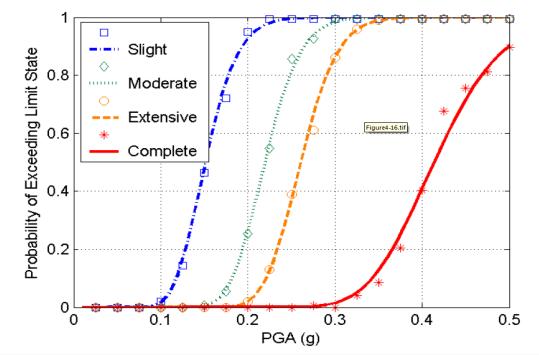




Communication Exchanges(CO) and Facilities: Critical Component For Service Delivery



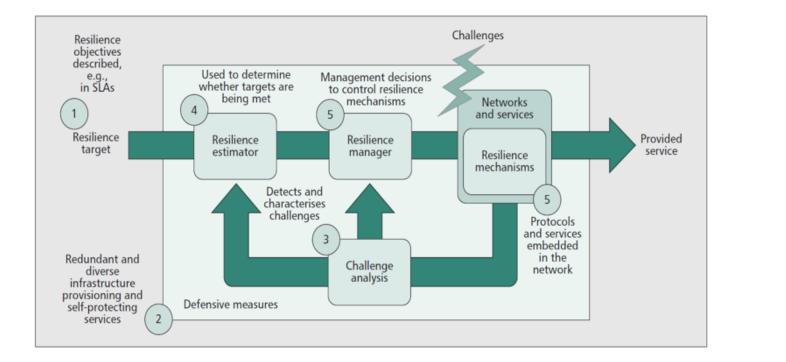
Fixed Network Architecture (Courtesy of Chorus)

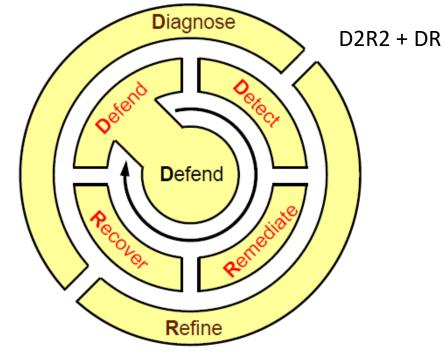


Seismic Risk Quantification for Communication Infrastructure

RON

Telecommunication Network Components	g	β
Point of Presence	0.40	0.60
Tandem Office	0.32	0.60
End Office	0.26	0.50


Reference [2]

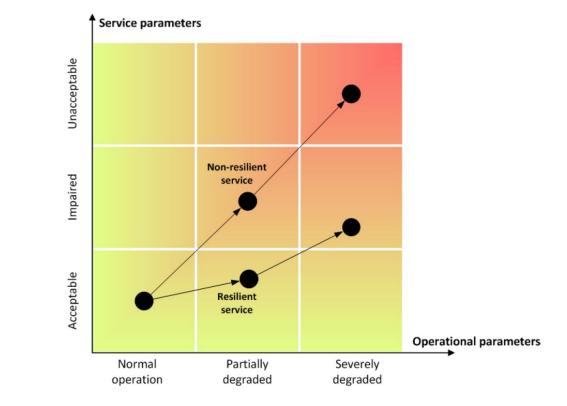


Resilience Strategy and Loopback Approach

The Resilience control loop: derived from the real component of D2R2 + DR resilience strategy

Reference [6]

Reference [3]



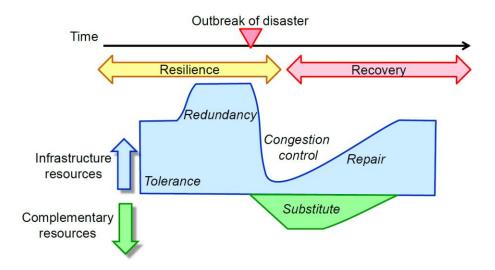
Measurement Framework for Resilient Communication Lifeline

Reference [5]

	Domain 1	Domain 2	Domain 3
Preparedness	Metric A		
Service Delivery	Metric B	Metric C	
Recovery			

Resilient Vs. Non Resilient Service

infrastructure

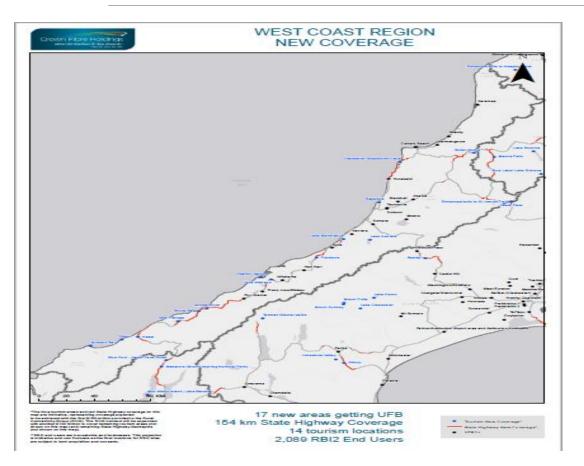


Time Phase of a Disaster and Resilient Communication Lifeline

Phase	Preparedness <i>before disaster</i>			Recove <i>after di</i>	y and reconstruction <i>saster</i>			
Disaster	Disaster detection	Emerge alert	ency			Health victim	a care for s	
Relief Systems		Evacua assista		Safety Con	firmation			
	Highly reliable telecommunication network		ergen ecomn	cy nunication				
Network Resilience and Recovery				elecommunicati saster area	on in			
			Rest	oring damaged	base stati	ons		
			mpora rvices	ary telephone				
				nunication netw nabilitation	/ork			
Electric	Highly Reliable Power Supply			electric power s refueling meth				
Power Supply	Emergency generator and batte	ery						

203

Reference [4 &5]

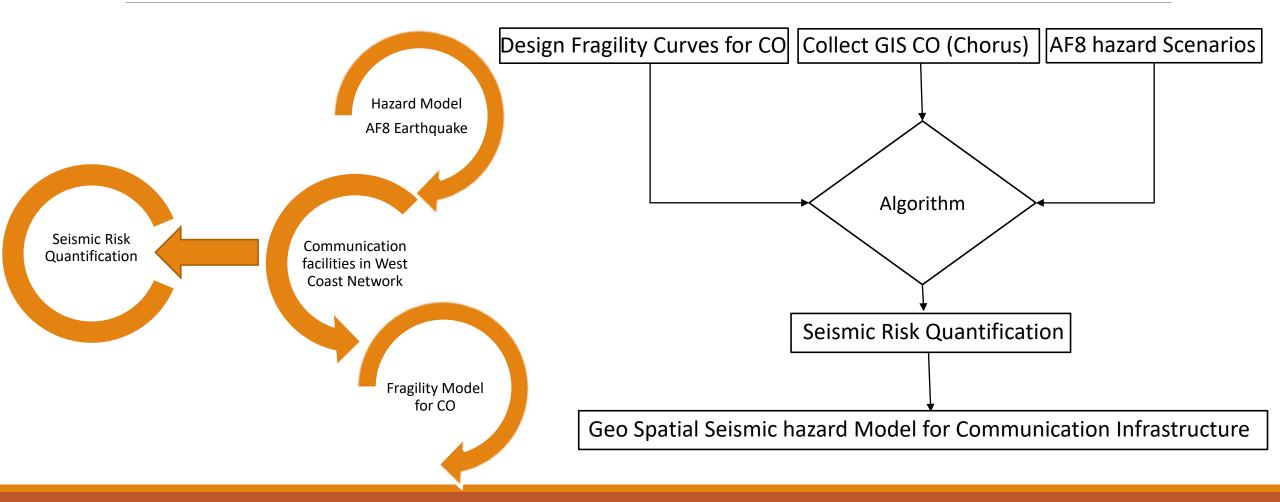

infrastructure

Crown Fibre Holdings

Use Case: West Coast AF8 Impact on Communication infrastructure

UFB coverage by region

Region	UFB phases 1&2 premises	UFB phase 2+ premises	Total premises with UFB	
Northland	39,558	5,547	45,105	
Auckland	388,313	3,661	391,974	
Waikato	134,253	14,668	148,921	
Bay of Plenty	91,686	2,544	94,230	
Gisborne	12,731	288	13,019	
Taranaki	35,908	989	36,897	
Hawke's Bay	47,447	1,597	49,044	
Manawatu-Wanganui	75,928	4,634	80,562	
Wellington	160,449	758	161,207	
Nelson	23,784	3	23,787	
Marlborough	14,919	678	15,597	
Tasman	6,222	1,762	7.985	
West Coast	8,565	2,678	11.243	
Canterbury	192,115	8,699	200,814	
Otago	73,491	7,380	80,871	
Southland	26,638	4,336	30,974	
Greenfields (To be built)	42,099	-	42,099	
Total across regions	1,374,107	60,222	1,434,329	


Note: the information in the above table is indicative only and subject to change. Crown Fibre Holdings will be working with partners to carry out more detailed planning over the coming months.

Reference [4]

Use Case: Approach

Ngā Ākina o Te Ao Tūroa

References

[1] – Leo A. Wrobel, and Sharon M. Wrobel, "Disaster Recovery Planning for Communications and Critical Infrastructure", April 2009.

[2] – Kanoknart Leelardcharoen, "INTERDEPENDENT RESPONSE OF TELECOMMUNICATON AND ELECTRIC POWER SYSTEMS TO SEISMIC HAZARD", Georgia Institute of Technology, December 2011.

[3] – Abdul Jabbar, "A Framework to Quantify Network Resilience and Survivability", 2010.

[4] – Blackmore P, "Overview of Disaster Relief Systems, Network Resilience and Recovery", in ITU-T Focus Group on Disaster Relief Systems, Network Resilience and Recovery, Version 1.0, May 2014.

[5] – "Requirements for Network Resilience and Recovery", ITU-T Focus Group on Disaster Relief Systems, Network Resilience and Recovery, May 2014.

[6] –"Network Resilience: A systematic Approach", IEEE Communication Magazine, July 2011.

[7] – Nair N, "Electricity Distribution Resilience Framework informed by West Coast Alpine Fault Scenario", Distributed Infrastructure Toolbox: NSC-RNC Project, March 2018.

[8] "Measurement Frameworks and Metrics for Resilient Networks and Services: Technical report" in European Network and Information Security Agency, Feb 2011.

[8] – Rob Ruiter, Chorus Network Specialist and <u>www.chorus.co.nz</u>

[9] - <u>https://resiliencechallenge.nz/Resilience-Home/Science-Programmes/Infrastructure/How-can-we-keep-the-lights-on-during-and-after-a-natural-disaster</u>.

[10] - <u>https://resiliencechallenge.nz/Resilience-Home/Science-Programmes/Infrastructure</u>.

[11] - <u>https://www.crowninfrastructure.govt.nz/ufb-initiative/</u>