

Kia manawaroa – Ngā Ākina o Te Ao Tūroa

Characterisation and screening of NZ stopbank networks

Phase 1

Dr Kaley Crawford-Flett, Prof Matthew Wilson, Marcus Rodger, Asaad Shamseldin

Outline

- 1. Flood protection in NZ
- 2. Toward an understanding of stopbank failure risks
- 3. DRAFT NZIS outcomes
- 4. Conclusions and future work

Flood protection in New Zealand

Protection in extreme events

Protection – personal and societal expectations

 Expectation: protection will withstand predicted loading conditions (i.e. not fail)

- Protective properties = f(
 - **1.** design/construction standard,
 - 2. current condition)

NZ society and engineering/safety standards

- Seatbelts AS/NZS 2596:1995
- PPE e.g. Helmets AS/NZS 2063
- Building Act 2004
- Regulations under the Building (Earthquake-prone Buildings) Amendment Act 2016
- Large dams NZSOLD dam safety guidelines (1995, 2001, 2015)
- Bridge manual (SP/M/022)
- Geotechnical NZGS guidelines
- Stopbanks (?)

Protective properties = f(

- 1. design/construction standard,
- 2. current condition)

Rangitaiki River stopbank breach, April 2017. Image: Sky View photography

MfE (2008) review of flood risk management

- The physical and engineering attributes of stopbank assets in New Zealand "vary across the country depending on past decisions, community expectations and the risk profile of each area"
- "There are no uniform standards for the design, construction and maintenance of (flood protection) assets."
- "Central government currently spends most of its investment in flood risk management on the <u>response</u> and <u>recovery</u> phases."

• "... local risks are a local responsibility..."

"local risks are a local responsibility"

Understanding stopbank failure risks

Failure under loading conditions

Since de-centralisation... (30 years)

- Loss of subsidies (previously up to 1:7 local:government)
- Population increase of ~43% 3.3M (1990) to 4.7M (2016)
- Loss of institutional knowledge (MWD)
- Fragmentation of expertise/resources/knowledge
- Climate change: increasing flood loads

Resulting risk profile?

	Dick Matrix		(Consequen	ce	
	KISK WALLIX	Trivial	Minor	Moderate	Major	Severe
	Almost certain	Ĺ	н	Н	E	E
por	Likely	L	м	н	н	E
- Internet	Possible	L	м	м	н	E
like	Unlikely	L	м	м	Н	н
	Rare	L	L	м	М	н
Probability	Source: https://ischool2013.wikispa	ailure	table.jpg/472497818/risk	s-table.jpg		
ng	Resistance					
(AEP)	(aka protecti	ve prope	rties)			Consequer
	Design standa	<mark>ve prope</mark> ards	rties)	Populatio Potential	n at Risk Loss of I	Conseque (PAR) Life (PLL)

Other

Areas of value (environment /cultural)

Paeroa • Lower Hutt "There are presently no uniform standards for the design, construction and maintenance of (flood protection) assets" 5 km 5 km

Probability of stopbank failure		Concertuonee	
Loading	Resistance	Consequence	
Seismic 🗸 (many mechanisms)	Design standards	Population at Risk (PAR) Potential Loss of Life (PLL)	
Flood (AEP)	Asset condition	Policy and planning Preparedness	
Other?	If location known	Areas of value (environment /cultural)	Slide 1

Project objectives

- Produce a single, standardised, reliable and spatiallyreferenced inventory in the form of the NZ Inventory of Stopbanks (NZIS)
- Characterise the New Zealand stopbank network (e.g. height, type, geometry, location, design and service levels)
- Inform a first stage assessment of the hazard exposure of the stopbank network across New Zealand

Project impacts

- Develop an improved understanding of New Zealand's stopbank infrastructure.
- Enable broad-based performance and consequence assessments across the portfolio.
- Help asset managers, owners and regulators manage risk, prioritise improvement works, and improve inspections following earthquake and flood events.

DRAFT Outcomes

Analysis of the NZIS

- Made possible by council river managers' forum (13 of 16)
- >4,800 linear km stopbank network
- Data varies by region (significantly!)
- Design and condition attributes generally unknown
- Impacts of non-council (undocumented) stopbanks?

The NZIS (4832 linear km): data completeness

The NZIS (4832 linear km): data completeness

		1 4	
Pro	hahi		
	Dani		

		Concontronco	
Loading	Resistance	Consequence	
Seismic 🗸 (many mechanisms)	Design standards	Population at Risk (PAR) Potential Loss of Life (PLL)	
Flood (AEP)	Asset condition	Policy and planning Preparedness	
Other?		Areas of value (environment /cultural)	

Eagle Technology, Land Information New Zealand

River

Awaiti Waimakariri South Branch/Otuk

Eagle Technology, Land Information New Zealand

River

- QA/verification
- Spatial hazard analysis (huge potential)
 - Geotechnical/coastal hazards
 - Cascading hazards

Conclusions and future work

Future of the NZIS

Protection - personal and societal

Expectation: our chosen method of protection will withstand predicted loading conditions to protect us (i.e. not fail)

- Probability of failure governed by
 - **1.** loading conditions \checkmark
 - 2. protective properties (resistance)

- Protective properties = f(
 - **1.** design/construction standard,
 - 2. current condition)

Spatial data informs consequence

Probability of	stopbank failure	Conconuenco	
Loading	Resistance	Consequence	
Seismic 🗸 (many mechanisms)	Design standards	Population at Risk (PAR) Potential Loss of Life (PLL)	
Flood (AEP)	Asset condition	Policy and planning Preparedness	
Other?	If location known	Areas of value (environment /cultural)	Slide 33

- 30 years after de-centralization of flood protection management, project aims to provide national perspective
- First standardized national dataset of stopbanks
- Made possible by council river managers' forum
- >4,800 linear km of stopbanks
- Few engineering properties known

Next steps

- Nationwide hazard screening outputs (QCoRE/RNC collab)
- Marcus Rodger MSc thesis (expected June? 2018)
- Reporting back to council river managers' forum
- Pilot: assessing impacts of undocumented stopbanks (Tasman case-study, 2018 ME project)

Kia manawaroa — Ngā Ākina o Te Ao Tūroa

QuakeCoRE NZ Centre for Earthquake Resilience

Questions?

QuakeCoRE Seminar Series, 20 April 2018