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Background

* Repair of conventional
concrete walls possible but
difficult [2016 QC project]

* Low-damage concrete walls
mostly based on PT rocking
systems

* Need a range of alternative
solutions
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ODbjectives

* Experimentally evaluate lower-damage modifications
relative to a benchmark conventional RC wall
* Debonded reinforcement (DBR)
* Fiber-reinforced concrete (FRC)
e ECC cutouts in wall boundary elements (ECC)
* ECC cutouts + higher axial load (ECC-H)

* Assess the reparability and residual capacity of the
tested alternative wall solutions



Benchmark (BM) Wall

M5 (Lu 2016)
* Designed per NZS 3101:2006 Amendment 3

e Shear span ratio =2
e Axial load ratio = 3.5%
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Wall #1: Debonded Reinforcement | J 0700

(DBR)
Philosophy:

* Promote single crack at wall base

e Prevent strain localization in
reinforcement = =
Debonding Slee\'es\ == é /Debonding Sleeves
Method: Tii== e
I o e T T
 Debonded bar within sleeve to e
prevent buckling e

* Debonding extends from base to 300
mm length into foundation

Debonding |4
Tubes V{




Wall #2: Fiber Reinforced Concrete | J 0700
(FRC)

Philosophy: R AR
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and possible tensile strain hardening =

Method:

e Add steel fibers at 1% volume ratio to
conventional concrete
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Walls #3 & 4: ECC cutouts QuakeCoRE

(ECC and ECC-H)
Philosophy:

e Use ECC in most damage prone boundary
element regions of wall.
* Benefits of ECC IEE

* Tensile ductility and strain hardening
behavior

I
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» Synthetic PVA fibers produce microcracking
and prevent crack localization

* Self-confining, no spalling

Method:

* Replace concrete with ECC in plastic hinge region

e (Cast concrete first, followed by ECC after removal
of boundary formwork.

* Mixed ECC in buckets with a drill in the
laboratory.




Response at low drifts

(@) BM (b) DBR

Comparison of average crack spacing and max crack width

(c) FRC

(d) ECC

Crack pattern maps at 0.50% drift

(e) ECC-H

e ECC & FRC propagated

cracks

Wall
At 0.50% drift BM FRC ECC ECC-H
Average Number of Cracks 10 155 27.5 24
Average Crack Spacing 140 90 51 58
Maximum Crack Width 1.5 2.3 1.7

* DBR mimicked rocking wall



Response at high drifts
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Comparison of (a) average curvature and (b) average reinforcement strain at 1.50%

drift for all walls.

Comparison of occurrence of buckling and associated reinforcement strain.

Drift at Buckling (%) Average Reinfgrcement Tensile
Test Wall Strain (%)
Drift to North Drift to South Drift to North Drift to South
BM +2.00%° -1.50%° 4.3% 4.4%
DBR -2.50%° +2.00%° 6.2% 3.8%
FRC -1.00%° +1.50%> 3.6% 6.6%
ECC - -1.00%° - 4.6%
ECC-H -1.00%" - 5.5% -
Average 4.9% 4.9%

sl

BM 2-3 dom

Four LD walls localized

to one crack

BM better distribution

of curvature
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inant cracks

&

reinforcement strain

DBR reduced
reinforcement strain



Reparability at 1.50% drift
(FEMA-P58)

BM (DSZa) Average Number of Cracks
e Epoxy inject dominant cracks
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Wall
At 1.50% drift BM DBR FRC ECC ECC-H
15.5 12.5 19 30 24
Average Crack Spacing 90 117 76 47 58
Maximum Crack Width 16.0 22.5 20.5 17.5

» Patch spalling of boundary elements

DBR (DS2)
e Paint surface crack

FRC (DS4)
* Replace steel and concrete due to bar buckling

ECC (DS4)
* Replace steel and concrete due to bar buckling

ECC-H (DS4)
* Replace steel and concrete due to bar buckling
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Moment- Displacement Response
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Material Tests &

Average D10 Reinforcement Stress V. Strain Steel 5y e o &,
600 = == = Advanced Materials Benchmark (D]_O) 387 484 0.40% 13.20%
— Benchmerk Advanced Materials (D10) | 314 411 0.35% 17.36%
/=484 MPa
500 — Benchmark (R6) 322 450 - 16.40%
/ £=411 MPa Advanced Materials (R6) 340 462 0.34% 14.96%
400 I Tt iy I
£ =T
S e Test Wall Concrete
7 300§ (days) |fem (MPa) f (MPa) p(kg/m®)
& oo BM 31.2 2.15 2337
DBR (31) 35.8 3.19 2395
FRC (37) 38.6 3.95 2422
100 £.=13.20% £, =17.36% ECC (129) 52.0 3.26 2412
yd ECC-H (127)| 436 3.48 2398
0 i -
0% 5% 10% 15% 20%
Strain (%) Test Wall ECC
(days) |fon (MPa) f (MPa) 1. (kg/m’)
Comparison of D10 vertical steel characteristics. ECC (83) 47.3 51 2000
ECC-H (84) 50.5 5.0 2006

e Coiled steel in advanced material walls
e ECC walls tested 3 months later than other tests

* FRC and ECC had increased tensile properties
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Backbone Curves =
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Final Condition of All Walls
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Test [ Concrete Bar
Wall | Spalling | Fracture
BM | -1.50%' | +2.00%°
DBR | -1.50%' | +2.00%°
FRC | +0.75%° | +1.50%°
ECC | +1.50%°% | -1.50%"
ECC-H| -1.00%° | -1.00%°

North End North End

North End North End

South End South End

South End

South End South End

(a) BM (b) DBR (©) FRC (d) ECC (e) ECC-H

Final condition of all test walls and exploded views of wall toes.

e ECCdid not spall until
buckling and fracture
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Conclusions

* BM wall had best distribution of curvature and
reinforcement strain over the wall height. Generally,
lower damage modifications fell short of expectations.

* DBR concept delayed bar buckling, but fracture
occurred almost immediately after buckling.

* ECC and FRC walls had increased crack propagation at
low drifts, but eventually crack localization occurred
and dominant cracks formed.

* FRC likely to be more effective with higher fiber volume
ratio (2%)

* Hand mix method may have negatively impacted ECC
material properties (tensile strain hardening)



