EMERGENCY EVACUATION

MODELLING FOR AUCKLAND

Prakash Ranjitkar

Senior Lecturer, Department of Civil and Environmental Engineering Faculty of Engineering, University of Auckland, New Zealand Email: p.ranjitkar@auckland.ac.nz

Research Contributors: Dr Mohsin Chaudhry, Chris Baker, James Cox, Sze Nga Hung, Zibo Yang, Nirojan Jayananthan and Sithika Jayasinghe

Transport Resilience Workshop, 1st December 2016

RESILIENCE TO NATURE'S CHALLENGES Kia manawaroa – Ngā Ākina o Te Ao Tūroa

QuakeCoRE NZ Centre for Earthquake Resilience

Need for Auckland's Evacuation Plan

Hazards	Expected number to be displaced	Risk rating	Evacuate
Volcanic Eruption	100,000	High	Yes
Earthquake	10,000	High	Yes
Lifeline Utility Failure	100,000	Very high	No

Source: Civil Defence's Auckland Evacuation Plan (2010)

- Auckland, <u>the largest city of NZ</u>, is located on an active volcanic field -Auckland Volcanic Field (AVF)
- Volcanic eruption is identified <u>as a high</u> <u>risk hazard</u> for Auckland with large scale evacuation needed
- □ The impact of volcanic eruption can be catastrophic for safety and economy

Uncertainty in volcano behaviour - estimates on warning time range from a day

to a week

Past Studies

Artists impression of a Manurewa volcano

Exercise Ruaumoko '08

- National disaster exercise / public surveys
- Assessment of strategic planning
- 48 hours notice required to evacuate 5 km radius zone (Lindsay et al., results 2010) - simply a postulation without \Box More detailed model required reasoned backing

Tomsen's Thesis (2010)

- Strategic level evacuation plan
- GIS based modelling using TransCAD
- Major gridlock experience with infinite clearance time – inconclusive

Research Objectives

- Determine a total clearance time
- Locate bottlenecks and high congestion areas in Auckland road networks during evacuation
- □ Investigate the effectiveness of traffic control strategies during evacuation
- □ Investigate selected traffic control measures such as contraflow to reduce clearance time

Methodology

Methodology

Evacuation Scenarios

Time	Vehicle Number	Assumptions		
Night	Single	Evacuees won't panic (Dombroski and Fischoff, 2006) Road Rules will be followed		
	Multiple	Selection of destinationsNo background traffic		
Day	Occupancy based	 30 people per bus People with no private vehicles, schools/university population uses buses 		

Study Area

For the worst situation, the eruption is assumed to be located 1 km south-west of Mt Eden with 5 km radius of the affected area.

Methodology

□ Origin and destination

- Each suburb is considered a zone
- Auckland contains 411 zones
 - 66 origin zones within the evacuation area
 - 347 destination zones

Night Time Single Vehicle Scenario

Vehicle Demand = $\sum H + \left\{ \frac{\left(\frac{L}{H+L}\right) \times P}{30} \right\}$

□ Night Time Multiple Vehicles Scenario Vehicle Demand = $\sum_{1}^{3}(H \times n) + \left\{\frac{\left(\frac{L}{H+L}\right) \times P}{30}\right\}$

Day Time Scenario

- H = number of households with vehicle(s)
- n = number of light vehicles
- L = number of households with no access to light vehicles
- M = mode share of bus
- P = total population within affected area
- W_i = workers going towards affected area
- $W_o =$ workers going out of affected area
- O_c = occupancy rate of private vehicles
- E = enrolments in affected area

S = students living in affected area

Vehicle demand =
$$\sum_{i=1}^{3} (H \times n) + \frac{(W_i - W_o) \times (1 - M)}{Oc} + \frac{(W_i - W_o) \times M}{30} + \frac{E}{30} + \frac{(\frac{L}{H + L}) \times (P - S)}{30}$$

Scenarios	Trips Generated
Night Time (Single vehicle per household)	76,239
Night Time (Multiple vehicles per household)	130,110
Day Time (Multiple vehicles per household)	169,226

Modelling of Auckland Road Network

VISSIM, VISUM and AIMSUN

Modelling in VISSIM (2014)

Limitations

Over 24 hours simulation time 10 simulations required for convergence

Results

Congestion on connector roads Motorways free flowing

Results using VISUM

Night Time (Single Car) Scenario

Night Time (Multiple Cars) Scenario

Volume of Vehicles Exiting Evacuation Area

Results using VISUM

Day Time Scenario

Volume of Vehicles Exiting Evacuation Area

Average Exit Link Flow

Modelling using AIMSUN

- □ Hybrid simulation tool
- □ Different platform and overview
- □ Can import Osm files
- □ Increasing usage in NZ

Building The Network

- □ Importing osm files
- Defining road network

Arterial and main collector roads

Lane configuration
 Number of lanes, turning bays,

give-ways

- Road attributes
 - Speed, Name and classification
- □ Actuated signal controls
- □ Origin demand matrix

3-D Image of Auckland CBD in AIMSUN

Modelling using AIMSUN

- Dynamic Scenario
- □ Microscopic Simulation
- As soon as possible (ASAP) vehicle arrival rate
- □ Stochastic route choice

Results using AIMSUN

Day Time Scenario

Network Performance Results

Day Time

Note: Red colour indicates links with speed below 5km/hr

Key Findings

- □ Total clearance time for worst case scenario (day time) is estimated to be between 10 and 12 hours
- \Box The south-western motorway (#20) is under utilized
- North motorway exit (Harbour bridge) had the greatest demand (30% of all evacuating vehicles)
- Congestion is observed near motorway on-ramps

Future Research Directions

- Locate bottlenecks and high congestion areas in Auckland road networks during evacuation
- □ Investigate the effectiveness of traffic control strategies during evacuation
- □ Investigate selected traffic control measures such as contraflow to reduce clearance time