
QuakeCoRE OpenSees 
Training Workshop 2016

Adding a New Material or 
Element to OpenSees



Adding	New	Classes	to	OpenSees

One	of	the	best	aspects	of	the	open	source	nature	of	OpenSees	 is	that	anyone	
can	download	the	source	code	and	make	changes	and/or	add	new	classes.

These	new	or	modified	classes	(e.g.	materials,	elements,	 integrators)	can	be	
used	locally	with	your	own	version	of	the	OpenSees	code,	and	with	sufficient	
testing	these	new	classes	can	be	added	to	the	main	source	code	so	any	
OpenSees	user	can	access	the	functionality	that	you	have	added.

There	are	two	main	ways	to	add	a	new	class:
o Create	a	library	(e.g.	myNewMat.dll on	Windows,	or	myNewMat.so on	
Unix-based	system)	that	can	be	found	by	the	OpenSees	 interpreter

o Adding	the	new	class	to	the	VisualStudio project	(for	Windows)	or	to	the	
Makefiles (for	Unix-based)	 to	be	compiled	and	linked	with	the	remainder	
of	the	classes	included	in	the	OpenSees	framework.



Adding	New	Classes	to	OpenSees

Detailed	instructions	for	how	to	implement	a	new	material	using	the	library	
option	(.dll or	.so	file	that	can	be	found	by	OpenSees)	are	available	on	the	
OpenSees	wiki	site	at	:
http://opensees.berkeley.edu/wiki/index.php/Adding_your_own_Code

Today	we	will	look	at	things	in	terms	of	the	other	option,	adding	the	new	class	to	
the	VisualStudio project	and	Makefiles to	be	compiled/linked	with	the	rest	of	
the	OpenSees	classes

The	primary	goal	of	this	module	will	be	to	understand	the	essential	 steps	
needed	 to	implement	a	new	class	in	OpenSees.	We	will	attempt	to	focus	on	the	
important	aspects	of	this	process	and	not	get	lost	in	C++	details.	

o The	intention	is	to	convey	that	the	general	process	is	really	quite	easy	



Adding	New	Classes	to	OpenSees

Detailed	instructions	for	how	to	implement	a	new	material	using	the	library	
option	(.dll or	.so	file	that	can	be	found	by	OpenSees)	are	available	on	the	
OpenSees	wiki	site	at:
http://opensees.berkeley.edu/wiki/index.php/Adding_your_own_Code

Today	we	will	look	at	things	in	terms	of	the	other	option,	adding	the	new	class	to	
the	VisualStudio project	and	Makefiles to	be	compiled/linked	with	the	rest	of	
the	OpenSees	classes

The	primary	goal	of	this	module	will	be	to	understand	the	essential	 steps	
needed	 to	implement	a	new	class	in	OpenSees.	We	will	attempt	to	focus	on	the	
important	aspects	of	this	process	and	not	get	lost	in	C++	details.	

o The	intention	is	to	convey	that	the	general	process	is	really	quite	easy	

New	code	for	OpenSees	can	be	written	in	C,	C++,	or	FORTRAN.	The	examples	we	
examine	will	be	in	C++,	but	the	essential	process	is	the	same	regardless.



Adding	New	Classes	to	OpenSees

The	first	step	is	to	obtain	the	OpenSees	source	code.	A	local	copy	can	be	
checked	out	using	subversion	(svn).	Anyone	can	checkout	the	code,	only	a	few	
people	can	commit	changes	directly.

o svn is	a	version	control	tool.	On	Linux	or	Mac	OS	X,	there	is	a	command	
line	svn client.	On	Windows,	TortoiseSVN (https://tortoisesvn.net/)	 is	a	
great	subversion	 tool.

Once	you	have	subversion	up	and	running,	the	source	code	can	be	checked	out.	
This	can	be	accomplished	by	typing	(or	copy/pasting)	into	the	terminal:
svn co	svn://peera.berkeley.edu/usr/local/svn/OpenSees/trunk	 OpenSees

Or	if	using	TortoiseSVN,	you	can	right	click	in	the	desired	directory	and	select	
Checkout	from	the	contextual	menu	that	appears,	then	enter	the	address	above	
into	the	appropriate	location.



Adding	New	Classes	to	OpenSees

The	directory	structure	that	you	checkout	will	look	something	like	this.	To	
compile	the	code	on	your	local	machine,	you	will	need	to	follow	the	instructions	
given	at	http://opensees.berkeley.edu/OpenSees/developer/builds.php.	
This	is	a	very	important	step,	but	it’s	not	the	focus	of	this	module,	so	we	will	
now	assume	in	subsequent	discussion	that	we	have	a	working	build	of	OpenSees



Adding	New	Classes	to	OpenSees

The	classes	for	OpenSees	are	
located	in	the	SRC	directory.

We	will	put	our	new	class	into	the	
appropriate	directory	out	of	the	
options	shown	here.

Some	of	these	have	further	
subdirectories	 to	better	divide	the	
classes.	For	example,	the	material	
directory	contains	separate	
subdirectories	 for	nDMaterials and	
uniaxialMaterials.



Adding	New	Classes	to	OpenSees

The	first	example	we	will	examine	is	an	nDMaterial.	Our	new	nDMaterial
subclass	will	require	a	header	 file	(ourNewmaterial.h)	 that	contains	definitions	
for	the	new	material	and	an	implementation	file	(ourNewmaterial.cpp)	 that	
contains	the	material	implementation.

o The	process	for	a	uniaxialMaterial is	identical,	just	swap	out	all	instances	
of	nDMaterial with	unixialMaterial and	everything	else	should	be	the	
same

When	starting	to	write	your	own	new	material/element/whatever,	 don’t	start	
from	a	blank	text	file.	Use	existing	classes	that	work	as	an	example	of	what	to	do	
in	your	own	code.	

We	will	look	at	the	header	file	first.



Adding	New	Material	to	OpenSees

The	first	example	we	will	examine	is	an	nDMaterial.	Our	new	nDMaterial
subclass	will	require	a	header	 file	(ourNewmaterial.h)	 that	contains	definitions	
for	the	new	material	and	an	implementation	file	(ourNewmaterial.cpp)	 that	
contains	the	material	implementation.

o The	process	for	a	uniaxialMaterial is	identical,	just	swap	out	all	instances	
of	nDMaterial with	unixialMaterial and	everything	else	should	be	the	
same

When	starting	to	write	your	own	new	material/element/whatever,	 don’t	start	
from	a	blank	text	file.	Use	existing	classes	that	work	as	an	example	of	what	to	do	
in	your	own	code.	

We	will	look	at	the	header	file	first.	This	file	contains	the	class	definition	for	the	
example	nDMaterial (BoundingCamClay in	this	case).	Here	we	define	all	of	the	
member	variables	and	functions	for	our	class.



Adding	New	Material	to	OpenSees
At	the	top	of	the	header	file	we	
list	the	includes	that	we	may	
need	(if	you’re	not	sure	what	to	
include,	look	at	similar	classes	
and	see	what	they	are	using)

We	also	define	 the	
BoundingCamClay class	as	a	
subclass	of	the	NDMaterial class



Adding	New	Material	to	OpenSees

We	also	define	 the	member	
variables	and	functions	for	
our	class	in	the	header	file.
Some	of	these	 functions	are	
public	functions	that	are	used	
by	all	classes.	We	need	to	
redefine	each	one	of	these	
public	functions	unless	we	
just	want	to	use	the	base	
class	functionality.
Some	variables	and	functions	
are	protected,	meaning	they	
can	only	be	used	by	the	
current	class.



Adding	New	Material	to	OpenSees

As	BoundingCamClay is	an	
nDMaterial,	we	have	to	
define	how	it	works	in	3D	as	
well	as	in	2D	configurations	
such	as	plane	strain.	

This	is	accomplished	by	
defining	subclasses	called	
BoundingCamClay3D and	
BoundingCamClayPlaneStrain



Adding	New	Material	to	OpenSees

The	most	important	 function	in	the	
material!!!!
The	element	sends	a	trial	strain	to	
the	nDMaterial,	then	some	algorithm	
(your	constitutive	model)	determines	
the	corresponding	stress and	tangent
which	are	then	queried	by	the	
element	using	the	getStress and	
getTangent methods



Adding	New	Material	to	OpenSees

This	is	the	setTrialStrain function	in	the	
BoundingCamClay3D.cpp file.	

We	set	the	member	variable	mEpsilon to	
be	equal	to	the	trial	strain	from	the	
element,	then	call	the	member	function	
plastic_integrator()	which	is	defined	in	
the	main	BoundingCamClay.cpp file.



Adding	New	Material	to	OpenSees

This	is	where	we	define	what	the	
BoundingCamClay3D class	sends	back	to	
an	element	when	queried	for	a	stress,	a	
tangent,	or	an	initial	tangent.



Adding	New	Material	to	OpenSees

For	comparison,	these	are	the	
corresponding	functions	for	the	
BoundingCamClayPlaneStrain subclass.
Note	that	the	setTrialStrain function	calls	
the	same	member	function	to	run	the	
constitutive	model	algorithm,	but	now	
the	strain	vector	coming	from	the	
element	only	has	3	components	so	the	
rest	are	set	to	zero.



Adding	New	Material	to	OpenSees
This	function	is	the	interface	between	 the	
interpreter	and	the	BoundingCamClay class.	It	
creates	the	material	from	the	info	provided.



Adding	New	Material	to	OpenSees

The	full	constructor	is	the	function	called	
when	the	material	is	first	created.	This	
function	should	initialize	variables	with	the	
values	of	the	input	parameters	entered	into	
the	interpreter	as	well	as	all	variables	are	
needed	 for	the	material	algorithm.



Adding	New	Material	to	OpenSees

The	null	constructor	is	the	function	called	
when	a	new	material	instance	is	created	by	
either	a	database	call	or	in	parallel	
processing.	This	function	should	initialize	
any	variables	that	are	needed	 for	the	
material	algorithm	and	give	some	sort	of	
value	to	the	variables	that	will	contain	the	
input	parameters.
The	destructor	provides	any	special	
instructions	needed	when	the	material	
object	is	removed.



Adding	New	Material	to	OpenSees

The	commitState function	is	called	when	
the	model	has	achieved	global	
convergence	in	a	given	load	step.

Any	history	variables	needed	 for	the	
constitutive	algorithm	should	be	
updated	here.



Adding	New	Material	to	OpenSees

The	setResponse and getResponse
functions	define	the	quantities	that	can	
be	called	by	an	element	recorder	as	well	
as	the	information	that	is	returned	by	
any	such	call	to	this	material.



Adding	New	Material	to	OpenSees
The	sendSelf and recvSelf functions	
define	the	what	is	sent	and	
received,	 respectively,	any	time	a	
database	is	set	or	called	or	any	time	
a	new	process	creates	a	copy	of	this	
material	in	parallel	processing.	
These	should	contain	all	the	data	
needed	 to	define	 the	material	and	
its	state



Adding	New	Material	to	OpenSees

The	Print	function	should	provide	
any	information	about	the	material	
to	be	displayed	whenever	Print	is	
called	by	another	class.
The	setParameter and	
updateParameter functions	define	
the	material’s	functionality	when	
something	like	setParameter or	
updateMaterialStage is	called	in	the	
interpreter	 (common	functionality	is	
to	switch	from	elastic	to	plastic	
response



Adding	New	Material	to	OpenSees

Once	we	have	defined	the	functions	we	just	noted,	as	well	as	the	all	important	
constitutive	algorithm	function	that	takes	the	trial	strain	from	the	element	and	
produces	a	trial	stress	and	tangent	to	send	back,	we	need	to	modify	a	few	files	
to	ensure	that	our	new	material	is	included	in	the	compiling	and	linking	steps.

For	Linux	or	Mac	builds	of	OpenSees,	
we	need	to	add	a	few	lines	to	the	
applicable	Makefile(s) such	that	object	
(.o)	files	will	be	created	when	we	
compile	the	code.
The	applicable	Makefile is	the	one	that	
resides	 in	the	same	directory	as	our	
material	files.	 If	we	created	a	new	
directory	to	house	our	new	files,	we’ll	
also	need	to	add	a	line	to	the	
../Makefile to	instruct	make	to	look	in	
this	new	directory
On	Windows,	the	new	material	needs	
to	be	added	to	the	VisualStudio project
so	it	will	be	compiled	when	the	project	
is	built.



Adding	New	Material	to	OpenSees

Next,	we	need	to	add	a	few	lines	to	the	
TclModelBuilderNDMaterialCommand.cpp
file	located	in	the	nDmaterial directory.	
These	commands	have	to	do	with	the	
interpreters.
The	OPS_NewBoundingCamClayMaterial
name	should	match	what	we	used	in	the	
corresponding	part	of	our	implementation



Adding	New	Material	to	OpenSees

Next,	we	need	to	add	a	few	lines	to	the	
TclModelBuilderNDMaterialCommand.cpp
file	located	in	the	nDmaterial directory.	
These	commands	have	to	do	with	the	
interpreters.
The	OPS_NewBoundingCamClayMaterial
name	should	match	what	we	used	in	the	
corresponding	part	of	our	implementation



Adding	New	Material	to	OpenSees

Next,	we	need	to	create	a	unique	set	of	
tags	for	our	new	class	(and	any	
subclasses)	and	add	these	 to	the	
classTags.h file	located	in	the	SRC	
directory.	

It	doesn’t	matter	what	the	tag	is	as	long	
as	it	is	unique.



Adding	New	Material	to	OpenSees

For	Linux	or	Mac	builds,	we	also	need	to	
add	our	new	class	and	subclasses	 to	the	
MATERIAL_LIBS definition	in	the	
SRC/Makefile



Adding	New	Material	to	OpenSees

Finally,	we	need	to	add	our	new	classes	as	includes	in	
SRC/actor/objectBroker/FEM_ObjectBrokerAllClasses.cpp
to	allow	our	new	material	to	be	used	in	parallel	
processing	or	by	the	database	commands.
Once	these	steps	have	been	completed,	we	should	now	
be	able	to	compile	or	build	our	local	OpenSees	and	test	
out	our	new	material	implementation.



Thank	you!

www.quakecore.nz


