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Advantages Over Stress-Based Procedure

o Primary mechanism of energy dissipation in sandy soils is frictional,
resulting from particles rubbing against each other as the sand
skeleton breaks down due to earthquake shaking
o Correlations developed from cyclic laboratory test results relating dissipated

energy to excess pore water pressures

O Macro fatigue theories already exist which use dissipated energy as
the damage metric

O Not reinventing the wheel, but rather just modifying existing (mature)
mechanical frameworks

O More firmly founded in mechanics than the semi-empirical stress-based
procedures, which will allow the procedures to be extrapolated to scenarios
not well represented in the liquefaction case history database

O Don’t need as many empirical “add-on” factors (e.g., MSF, K, Ky, ...)




Advantages Over Stress-Based Procedure

(cont.)
A

0 Loading does not necessarily have to be earthquake shaking (e.g.,
blast loading, vibroseis, etc.)

Desired Characteristics of Energy-Based

Liquefaction Procedure
A

O Required input shouldn’t be onerous

O Specification of earthquake motions should be inline with how design

earthquake motions are currently specified for liquefaction evaluations (e.g.,
Mw and PGA)

O Should be able to accommodate more refined characterization of
earthquake motions (e.g., acceleration time series)

O Soil characterization should be in terms of common index parameters (e.g.,
SPT N-value, CPT tip resistance and sleeve friction, Vs, etc.)
0 Implementation should “feel” familiar to practicing engineers
O Format should be similar to the simplified liquefaction evaluation procedure
O Implementation shouldn’t be oo complex

o Should have both deterministic and probabilistic forms (full
quantification of uncertainties)




Dissipated Energy (total stress analysis)
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“Simplified” Approach for Determining
Dissipated Energy (total stress analysis)
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“Simplified” Approach for Determining

Dissipated Energy (total stress analysis)
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“Simplified” Approach for Determining

Dissipated Energy (total stress analysis)
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“Simplified” Approach for Determining

Dissipated Energy (total stress analysis)
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Acceleration

“Simplified” Approach for Determining
Dissipated Energy (total stress analysis)
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Comparison of Seed et al. (1975) and Alternative
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Correlation between n_, and PGA
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Correlation between n_, and PGA
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Preliminary Form of Energy-Based Charts
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Relationship to Stress-Based Liquefaction
Evaluation Procedure

A ————————
O Parameters that can be back-calculated from energy-based
procedure
O MSF
oK,
O Kpg

Future Work

A ————————
o Currently refining estimates of uncertainty
o Developing revised (and consistent) stress-based procedure

o Comparison for a range of earthquake scenarios with alternative
procedures




