QuakeCoRE and OpenSees (Year 1): Optimisation of Source Code,

Pre- and Post-Processing Tools, and Community Development

C.R. McGannt?, S. Jeong?, B.A. Bradley!3, K. Tarbalil, L. Wotherspoon?2:3, D. Lagraval, S.E. Bae3
1 University of Canterbury; 2 University of Auckland; 3 QuakeCoRE

* christopher.mcgann@canterbury.ac.nz

The OpenSees finite element platform (Open System for Earthquake Engineering Simulation) developed through the University of

California Berkeley is the principal collaborative software identified by

seismic response modelling of individual infrastructure components. OpenSees was selected for this purpose due to its capabilities
as an open-source platform for sequential and parallel analysis of both geotechnical and structural systems. OpenSees is one of

BRANZ

Resilient %

ORGANISATIONS

UNIVERSITY OF
lllll

To facilitate the use of the OpenSees finite element platform by QuakeCoRE researchers, several key tasks involving both human

for use in detailed and computational resources have been identified as strategic objectives for QuakeCoRE year 1. All of these tasks fall under the

the few tools available with all of these attributes, and due to this unique combination of features it meets all three of the

underlying principles identified for QuakeCoRE Technology Platform 4: it is , 1t is

The primary objectives of OpenSees development under Technology Platform 4 coincide with the overall objectives of the tech
platform. These two objectives are somewhat intertwined, but specific OpenSees-related tasks/objectives are noted for each.

As OpenSees has been adopted as the primary seismic response analysis tool for QuakeCoRE, it is
important to take steps that can accelerate the process of learning and working with this tool for new researchers.

Training for new users of OpenSees to provide a headstart and build overall knowledge base of community

(able to make use of HPC
resources), and it is (works for variety of problem types and able to work with other QuakeCoRE software modules).

overall objectives of Technology Platform 4 to reduce the entry barrier and reduce the time to solution for OpenSees researchers.
To date, a number of these tasks have been completed and work is well underway on the remaining tasks.

Provide a starting point for new users and enhance the capabilities of comfortable and advanced users.
Encourage community engagement and provide forum for community development.

OpenSees Training Workshops: Training workshops for new to advanced users of OpenSees. Held in Christchurch on 10
and 13 June, and Auckland on 14 June. Future workshops will be held based on community feedback and interest

Encourage and provide arena for community involvement among researchers performing OpenSees analysis

It is also important to provide workflow infrastructure that reduces the pre- and post-processing
overhead associated with OpenSees analysis so researchers can move from idea to analysis to results in an efficient manner.

Establish standarized pre- and post-processing workflows for problems identified by OpenSees user community

Pre-process tools: model generation scripts in Python and tcl (the two interpreter languages for OpenSees), standard
code/script blocks to be pasted into model files, interfaces with pre-processing GUI tools such as GiD, Gmesh, etc...

Post-processing tools: Python scripts to prepare data and create common plots, interfaces with post-processing GUI

tools such as GiD, Paraview, and others.

Student Innovation Prizes: Two $500 prizes to be awarded at the 2016 QuakeCoRE Annual Meeting recognizing
significant earthquake engineering research that has been undertaken using OpenSees by postgraduate students

Monthly OpenSees Community Webconferences: To provide a place where researchers can share their work with the
QuakeCoRE research community, where we can hold presentations about OpenSees topics of interest from researchers in
NZ and worldwide, and to generally facilitate collaboration and sharing within the community.

Efforts to implement and optimise OpenSees on National e-Science Infrastructure (NeSI) HPC

resources, to optimise workflows for running parallel OpenSees simulations on NeSI resources, and to develop a suite of pre-
and post-processing tools to streamline OpenSees use for QuakeCoRE (and all) researchers.

Established development group for ongoing development of OpenSees capability within QuakeCoRE. The group currently
consists of the authors, but it is not intended to be a static group, and new members will be added as appropriate.

Identification of initial tasks for OpenSees computational development:

Pre- and Post-processing tools 1D site response analysis — chosen based on community feedback

Parallel processing workflow for very large models using OpenSeesSP - strategic objective for QuakeCoRE

Pre-Processing Tasks for Model Generation

Code blocks for common
modelling tasks Python and tcl model

O 7] cyclicMixControl.tcl (~/...yclicSimpleShearMix) - VIM creatio n SC ri pts

C ® |7 freeFieldEffective.tcl (~/openseesResearch/siteResponseEffective) -.
model BasicBuilder -ndm 2 -ndf 3

counter for max number of steps

set count 0

loop through the total number of cycles
for {set i 1} {$i < $nCycles} {incr i} {

set ppNodesInfo [open ppNodesInfo.dat wl
set count 1
set layerNodeCount 0
loop over soil layers
for {set k 1} {$k <= $numLayers} {incr k 1} {
loop in horizontal direction
for {set i 1} {$i <= $nNodeX} {incr i 2} {
loop in vertical direction
if {$k == 1} {
set bump 1
} else {
set bump 0

puts "Beginning of Cycle $i"
loop within each cycle
for {set j 1} {$j < 5000} {incr j} {

abort if count is greater than max number of steps
if {$count >= $maxStep} {break}

analyze single step and get the current stress
analyze 1

set count [expr $count + 1]

get stress from element

set stress [eleResponse 1 stress]

puts "stress = $stress"

shear stress is component 5

set tau [lindex $stress 5]

puts "tau = $tau”

}
for {set j 1} {$j <= [expr 2x$nElemY($k)+$bumpl} {incr j 2} {

set xCoord [expr ($i-1)*$sElemX/2]
set yctr [expr $j + $layerNodeCount]
set yCoord [expr ($yctr-1)x$sElemY($k)/2] ‘I

. set nodeNum [expr $i + ($yctr-1)x$nNodeX]
signal change in loading direction if needed

if {[expr abs($tau)] >= $maxShear} { node $nodeNum $xCoord $yCoord
puts "direction change required: tau = $tau"
output nodal information to data file
get current displacements of shearing nodes puts $ppNodesInfo "$nodeNum $xCoord $yCoord"
set f [expr 2.0x[nodeDisp 5 1]]
set b [expr 2.0x[nodeDisp 7 1]]

puts "current displacement of back row is $b"

designate nodes above water table
set waterHeight [expr $soilThick-$waterTablel

if {$yCoord>=$waterHeight} {
set dryNode($count) $nodeNum
set count [expr $count+1]
}
}

get number of steps required to reach current disp from zero
set nStep [expr round(abs($b/$wg))]
puts "there are $nStep steps needed to get back to neutral loading"

}

get current time
J set layerNodeCount [expr $yctr + 1]

set cTime [getTimel

puts "current time is $cTime"

set an end time for the load patterns

set zTime [expr $cTime + $nStepx$dt]

set eTime [expr $zTime + 100.0x$nStepl

puts "end time for the new load pattern is $eTime"

close $ppNodesInfo
puts "Finished creating all -ndf 3 nodes..."

define fixities for pore pressure nodes above water table
for {set i 1} {$i < $count} {incr i 1} {

. fix $dryNode($i) 0 0 1
clear the current shearing load patterns }

remove loadPattern [expr 300+$i-1]
remove loadPattern [expr 400+$i-1]

Script converts GUI input to tcl model file

O UWbridge2D.bas (~/gidPost/p...emTypes/UWbridge2D.gid) - VIM

B
This file was made using the UWbridge2D problem type in GiD.
Created by: Chris McGann and Pedro Arduino, 2012
-University of Washington-
BHHHHRBRRHHH BB R A

Model development using GUI tools

*# determine the designated number of degrees of freedom and specified element type

Fill (5.4m) *set Cond Nodal_DOF_on_surfaces *nodes
*Lloop nodes *0OnlyInCond
Sat. Loose Sand (3.8m) *if(cond(1,int)==2)
. model BasicBuilder -ndm 2 -ndf 2
Sat. Dense kxset var mDOF(int)=2

*1f(strcmp(cond(2),"quad")==0)

*set var mElemType(int)=1
*elseif(strcmp(cond(2),"SSPquad")==0)
*set var mElemType(int)=2

*endif

*break

xelseif(cond(1,int)==3)

model BasicBuilder -ndm 2 -ndf 3
*set var mDOF(int)=3
*if(strcmp(cond(2),"quadUP")==0)

Sand (3.5m)

*set var mElemType(int)=3
xelseif(strcmp(cond(2),"SSPquadUP")==0)
k*set var mElemType(int)=4

xendif

xbreak

xendif

*xend nodes

Tads # define soil nodes
Sat. Medium xset Cond Nodal_DOF_on_surfaces *xnodes
Sand (9.5m) xloop nodes *0OnlyInCond
xformat "%8i %10.3f %10.3f"
Sat. Gravel node *NodesNum xNodesCoord

. *end nod
GhOfranl (2016) p(::s Ir:(I:i(r?;ished creating all -ndf 2 nodes..."

Model Assessment and Analysis

Structural Modelling

1 |
\\\ : NI . NN . g
I w\\ g IH' = | :T lj\&\,
| | P 1
N |
=l NS
NHEENH DS

Celarec and Dolsek. (2013)

Site Response Modelling

NN 1 o

amy OO .
987 T
I

T
||||||
T
1Ty
|||||||||||| inmanf AL
|||||||||||||||| INRURRRENE]
|||||||||||||||||| ISpaRENETaN] O O rrrey
|||||||||||||| I T T iEEEn NS} (EANENEN NN NSNSy sssanaiiundinull llllusnnendiAREEREE!

Jeong and Bradley (2015)

. .y

Soil-Structure Interaction Modelling

Ghofrani (2016)

Post-Processing and Visualisation
Standard plots for different problem types

] g 3 m below surface 3 m below surface 3 m below surface 5 05—

Standard plotting scripts “ 7 5 |
< 20 o

O,] resultPlotter.py + (~/constitutive...estCases/cyclicSimpleSh... %, 0 ’ %, -2 05

import matplotlib.pyplot as plt e -20 v

——— OpenSees results ——————————————————————o 0 -4 -2 0 0 50 700 00 20 40

load stress and strain data v (%) c, (kPa) time (sec)

stress = np.loadtxt('stress.out’') 7 m below surface 7 m below surface 7 m below surface

strain = np.loadtxt('strain.out')

mean stress 40 40 -

p = np.abs(stress[:,1:4]).sum(axis=1)/3.0 20 20 -

triaxial deviator stress

q = stress|[:,6]

shear strain for triaxial test -20 v -20

e = strain[:,6] _40 —40 o~
) -4 -2 0 0 .50 100 0 20 40

——— planeStrain model —-——————————————————— Y (%) ¢, (kPa) time (sec)

psmod = np.loadtxt('planeStrainDriver/out715.tor")

pp = psmod[:,1]

qp = psmod[:,2]

ep = psmod[:,0]

t (kPa)
o
(kPa)
o
7
7
/ \
r
o
wn
elevation (m)

16 m below surface 16 m below surface 16 m below surface
figl = plt.figure(1)

50 50 o
0 0kC = 05
-50 -50 %
plt.plot(p,q,'-b',linewidth=3.0)
#plt.plot(pd,qd,'—-r', linewidth=2.0) -4 -2 0 0 100 200 0 20 40

plt.plot(pp,qp,'-g',linewidth=2.0) v (%) o, (kPa) time (sec)

T (kPa)
T (kPa)

create figures

elevaton (m)
|

plt.xlabel('p (kPa)"')
plt.ylabel('q (kPa)"')
plt.grid(True) . 2r
plt.axis([0,120,-30,30])

time step = 0.005 s
7989 steps

Scripts to format output for use o 05
In GUI visualisation tools 0.4

c- UW3DgidPost.cpp (~/gidPost/mGidPost) - VIM =3 ooy ejol 1111
= |— Convento Viejo| @ i

#include <iostream>
#include <fstream>
#include <cstdlib> ()]

#include <math.h>

#include <vector> O . . oLl > : R - 8 . Tl . R
#include <algorithm> _ - _

#include "../source/gidpost.h" 10 10 10 10 10
using namespace std; T (S)

0 10 20 30 40
time (s)

int McGann (2013)

WriteElement(int nRow, int nNode, int nElem, int mCase) {

// determine number of degrees of freedom for stress from input
int nDOF;
if (mCase == 1) {
nDOF = 7;
} else if (mCase == 2) {
nDOF = 6;
} else {
cout << "ERROR: Incorrect matID: PDMY matID = 1 Elastic matID = 2." << endl;

y T e Visualisation using GUI tools

int nStress = nDOFxnElem;

// create mesh information for GiD HOl"iZOIltal DiSplaceInent (CIH)

GiD_OpenPostResultFile("test.post.res", GiD_PostAscii);
//GiD_OpenPostResultFile("test.post.bin", GiD_PostBinary); _ j
GiD_OpenPostMeshFile("test.post.msh",GiD_PostAscii);

northeast abutment

N W N

I
// create mesh for solid elements ! (N R
GiD_BeginMeshColor("solidMesh", GiD_3D, GiD_Hexahedra,8,0,255,0); 0.0 25.0 50.0 75.0 100.0 ¥ ; I 90 cm
GiD_BeginCoordinates(); \

// solid node coordinates
std::ifstream nodeFile("nodeInfo.dat");
vector<int> nID(nNode);
double coordX;
double coordY;
double coordZ;
for (int i = 0; i < nNode; i++) {
nodeFile >> nID[il;
nodeFile >> coordX;
nodeFile >> coordY;
nodeFile >> coordZ;
GiD_WriteCoordinates(nID[i], coordX, coordY, coordZ);

}
nodeFile.close();
GiD_EndCoordinates();

McGann (2013)

Ghofrani (2016)

