AIMS AND OBJECTIVES

Develop and apply a holistic framework for tsunami vulnerability assessment of critical infrastructure

- Develop tsunami vulnerability functions for infrastructure which consider a range of:
 - Lifeline utility network components
 - Hazard intensity measures
 - Impact types

- Apply synthesised vulnerability functions to a New Zealand-based impact, outage and recovery assessment

BACKGROUND

Impact assessment is important for proactive tsunami risk management. However, research on tsunami vulnerability of infrastructure lifelines is largely under-developed.

Tsunami vulnerability functions typically use depth as a proxy for direct damage. We aim to develop new functions which consider a range of construction standards (material etc.) hazard intensity measures (depth, speed, loading etc.) and impact types (direct damage, level of service etc.).

METHODOLOGY AND FRAMEWORK

2011 TOHOKU TSUNAMI, JAPAN

2015 ILLAPEL TSUNAMI, CHILE

2018 SULAWESI TSUNAMI, INDONESIA

APPLICATION: CHRISTCHURCH CASE-STUDY

RESULTS

VULNERABILITY FUNCTIONS

- Level standards: Construction type, material, dimensions etc.
- Hazard intensity measures: Wave velocity, inundation depth, hydrodynamic loading
- Impact: Direct damage, level of service

IMPACT/RECOVERY ASSESSMENT

- Impact: Intensity, source, sea level rise, hazard intensity measures.
- Recovery: Risk governance, outage times

ASSESSMENT

- Median inundation depth, wave height
- Damage to infrastructure and lifelines
- Impact on utility poles and roads

ANALYSIS

- Road and utility pole impacts
- Damage to critical infrastructure
- Impact on service delivery