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Introduction

e Spatial correlations in ground motions are important for distributed
assets:

* Portfolios of buildings
 Horizontal infrastructure

* For many years, traditional models of spatial correlation have been
limited by observed data density.

* Recently, this has been (partially) alleviated by:
* Increase in station density and instrument quality = more observations
* High fidelity physics-based ground motion simulations

* Existing and currently improving NZ datasets provides opportunity to:
* Advance spatial correlation modelling
 Validate spatial correlations in physics-based ground motion simulations



Introduction

* “Domain Map” of the project.

Observational
data

Obj. 1 Obj. 3
Spatial
correlations

New insights into
phenomena and
improved modelling

Empirical Physics-based
analysis simulation

Obj. 2



Objective 1: Analysis of Observational Data

* NZ-based studies on spatial correlation of observational data:

» Bradley (2014) - Site-specific and spatially-distributed ground-motion
|nten5|ty estlmatlon in the 2010-2011 Canterbury earthquakes.
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Objective 1: Analysis of Observational Data

* NZ-based studies on spatial correlation of observational data:

* Chen et al. (2021) - Non-Stationary Spatial Correlation in New Zealand Strong
Ground-Motion Data
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Objective 1: Analysis of Observational Data

* NZ-based studies on spatial correlation of observational data:

* Chen et al. (2021) - Non-Stationary Spatial Correlation in New Zealand Strong
Ground-Motion Data
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Objective 1: Analysis of Observational Data

* Chen et al. (2021) used the NZ SMDB Van Houtte et al. (2017).

Van Houtte et al. (2017) 277
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Objective 1: Analysis of Observational Data

* Recently-developed NZ GMDB v3.3 Hutchinson et al. (2023).
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Objective 2: Analysis of Simulations

* Studies on spatial correlation of physics-based ground motion
simulations:

* Chen and Baker (2019) - Spatial correlations in CyberShake physics-based
ground motion simulations.
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Objective 2: Analysis of Simulations

* Chen and Baker (2019) identified correlatlon structures in the

simulations.

Influence of Geology:
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Objective 2: Analysis of Simulations

e CybershakeNZ

o Simulation Output Locations
Seismic Source Model (~400-500)
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Objective 2: Analysis of Simulations

* CybershakeNZ

Typical Hazard Results from CyberShakeNZ
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Number of realizations

Objective 2: Analysis of Simulations

* CybershakeNZ

Several Realizations per Rupture
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Objective 3: Validation of Simulations

 Studies on location-by-location validation of simulations in NZ:

e Lee et al. (2020) - Hybrid broadband ground motion simulation validation of
small magnitude earthquakes in Canterbury, New Zealand.
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Objective 3: Validation of Simulations

 Studies on location-by-location validation of simulations in NZ:

e Lee et al. (2022) - Hybrid broadband ground motion simulation validation of
small magnitude active shallow crustal earthquakes in New Zealand.
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Objective 3: Validation of Simulations

 Studies on location-by-location validation of simulations in NZ:

e Lee et al. (2022) - Hybrid broadband ground motion simulation validation of
small magnitude active shallow crustal earthquakes in New Zealand.
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Objective 3: Validation of Simulations

* Previous validation primarily through comparison of “observation only”
and “simulation only” models.
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* However, spatial trends and clusters in obs-sim residuals exist and imply
spatial correlation exists in them too.

e An analysis of obs-sim residuals could illuminate key features that are not
currently (or incorrectly) modelled in the simulations.



(Main) Challenges

 Observational Data:

e Quality control of ground motions and metadata.

* Simulations:
* Computational challenges with running high resolution simulations.

 Scientific advances to facilitate simulation of high frequencies that are
seismologically accurate (e.g., rupture and velocity models).

* Logistic:
* Finding a PhD student to do the work.

ROYAL

SOCIETY https://lee-robin.github.io/

TE PUTEA RANGAHAU =
A MARSDEN TE APARANGI
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