Source Parameters from Generalized Inversion and Their Spatial Pattern

Chuanbin Zhu^{1*}

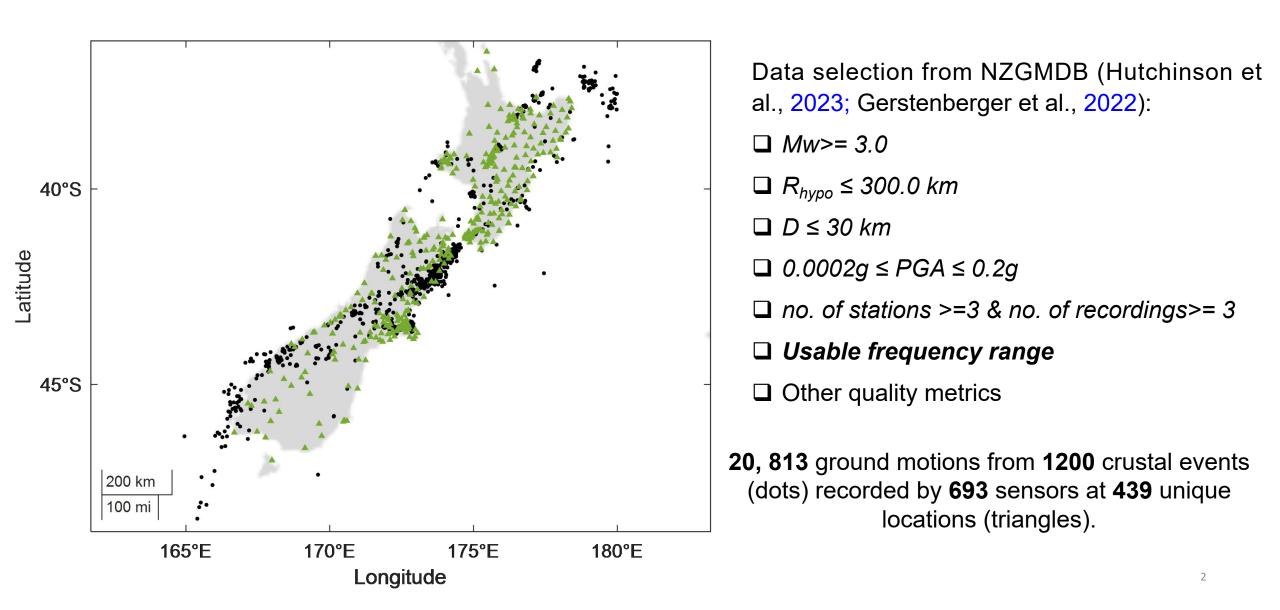
GIT team: Sanjay Bora², Brendon Bradley¹, Dino Bindi, and others

University of Canterbury, New Zealand;
 2. GNS Science, New Zealand
 3. GFZ German Research Centre for Geosciences, Potsdam, Germany.

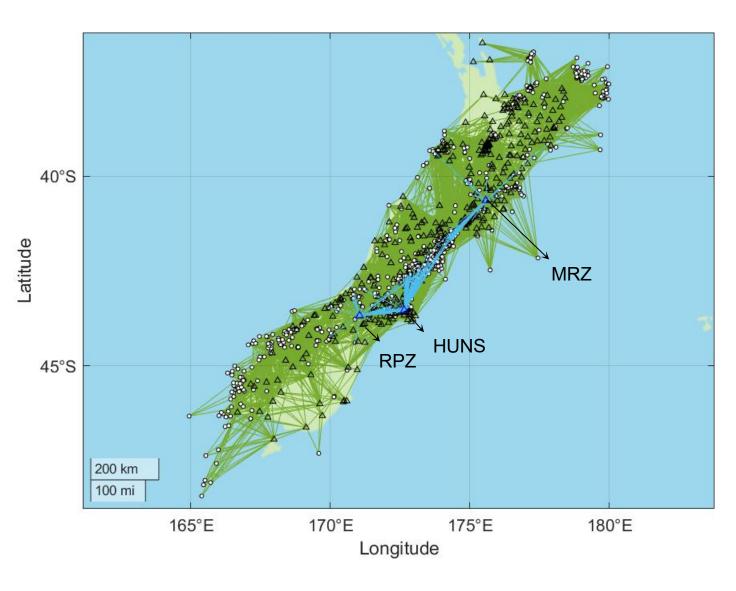
*Corresponding author (chuanbin.zhu@canterbury.ac.nz)

1

Shallow Crustal Events



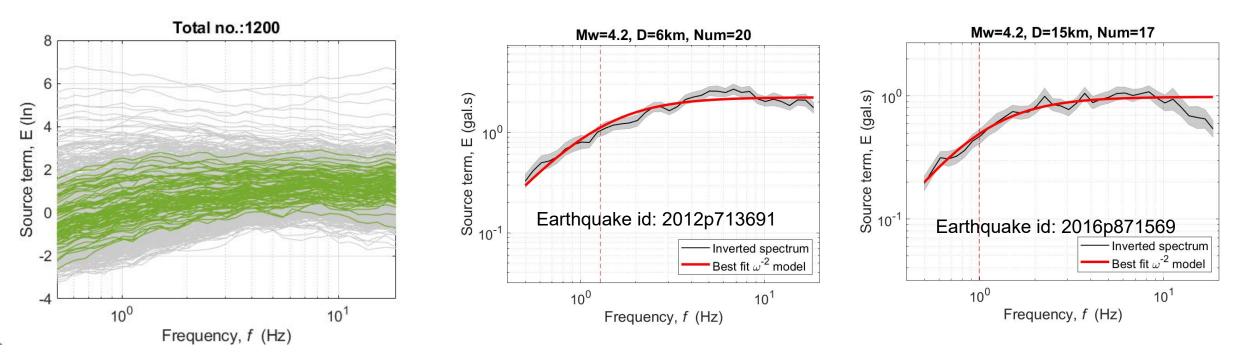
Non-Parametric Generalized Inversion



Generalized inversion (Andrews, 1986; Castro et al., 1990): Tectonic class-Event-(and region) Sitespecific dependent specific $lnH_{1,1}(f) = lnE_1(f) + lnP_{1,1}(f) + lnS_1(f)$ $lnH_{i,j}(f) = lnE_i(f) + lnP_{i,j}(f) + lnS_j(f)$ $lnH_{N,n}(f) = lnE_N(f) + lnP_{N,n}(f) - lnS_n(f)$ $b = A \cdot x$

Non-parametric scheme: no pre-defined functional forms;

Parameterize Source Spectra



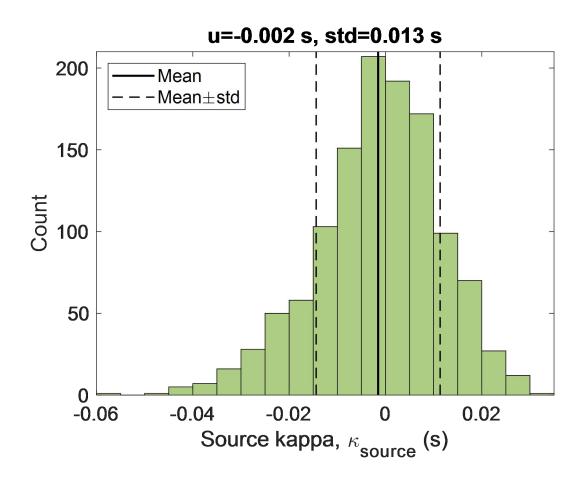
The theoretical source model used herein, E'(f), consists of both the standard ω^{-2} model (Brune, 1970 and 1971) and a κ_{source} filter:

$$E'(f) = (2\pi f)^2 \frac{R_{\theta \phi} VF}{4\pi \rho \beta^3 R_{ref}} \times \frac{M_0}{1 + \left(\frac{f}{f_c}\right)^2} e^{-\pi \kappa_{source}(f - f_k)}$$

standard ω^{-2} model high-frequency fall-off

Source Kappa κ_{source}

Inverted κ_{source} for each of the 1200 events:

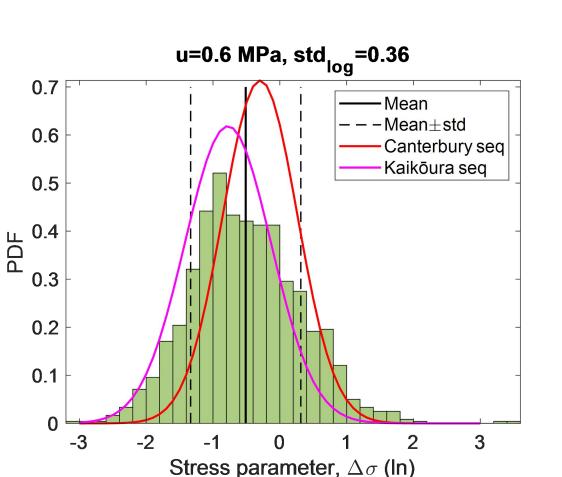


□ Source spectra, on average, follow ω^{-2} model; □ Some individual events may not; □ Origin debatable, e.g., source and site effects (Hanks, 1982; Papageorgiou and Aki, 1983); □ Instead of $\left(\frac{f}{f_c}\right)^2$, using $\left(\frac{f}{f_c}\right)^{2.5}$ (Beresnev, 2019); $E'(f) = (2\pi f)^2 \frac{R_{\theta \phi} VF}{4\pi \rho \beta^3 R_{ref}} \times \frac{M_0}{1 + \left(\frac{f}{f_c}\right)^2} e^{-\pi \kappa_{source}(f - f_k)}$

Stress Parameter $\Delta \sigma$

Stress parameter $\Delta\sigma$ (unit: Pa) can be obtained from inverted M_0 and f_c , assuming a circular fault rupture with uniform stress drop (Eshelby, 1957; Keilis-Borok, 1959; Brune, 1970):

 $\Delta \sigma = 8.5 M_0 (\frac{f_c}{\beta})^3$



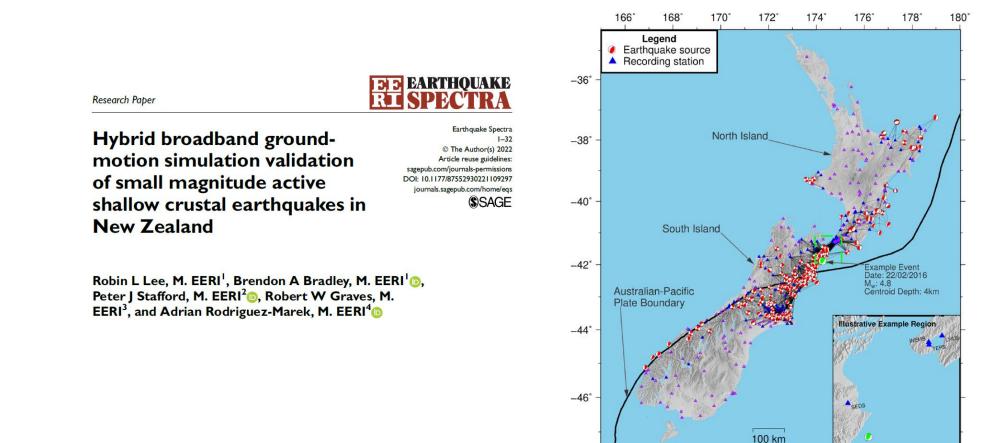
□ Mean: similar to that in Japan (Nakano et al., 2015);

- Std: consistent with other regions, e.g., Japan and California (e.g., Baltay et al., 2013; Oth et al., 2017; Trugman, 2019);
- □ The 2010-2011 Canterbury sequence has a mean $\Delta \sigma$ higher than the national average whereas the 2016 Kaikōura sequence has a lower mean $\Delta \sigma$.

Stress Parameter $\Delta \sigma$ & Between-Event Term δB_e

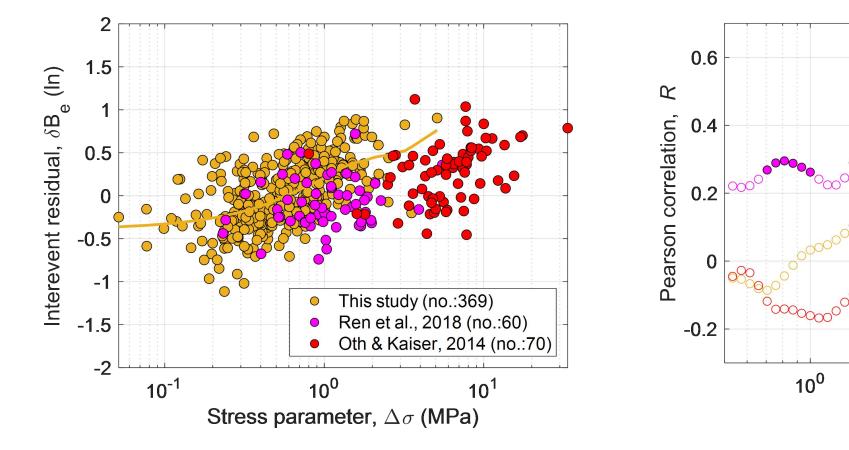
Lee, Bradley et al. (2022) partitioned the total residual between observation (y_{es}) and prediction (f_{es}) from hybrid broadband simulations of 479 small magnitude (Mw 3.5-5.0) active shallow crustal (< 20 km) earthquakes:

 $\ln y_{es} - \ln f_{es} = a + \delta B_e + \delta S2S_s + \delta WS_{es}$



7

Stress Parameter $\Delta \sigma$ & Between-Event Term δB_e



 $\Box \delta B_e$ at *f*=18.5 Hz;

 \Box Positive correlation with Pearson's *R* = 0.56;

- \Box Open circles represent those with *p*-value>0.05;
- □ At relatively low frequencies, weak dependence of $\Delta \sigma$ on Fourier amplitudes for $f < f_c$;

Frequency, *f* (Hz)

This study (no.:369)

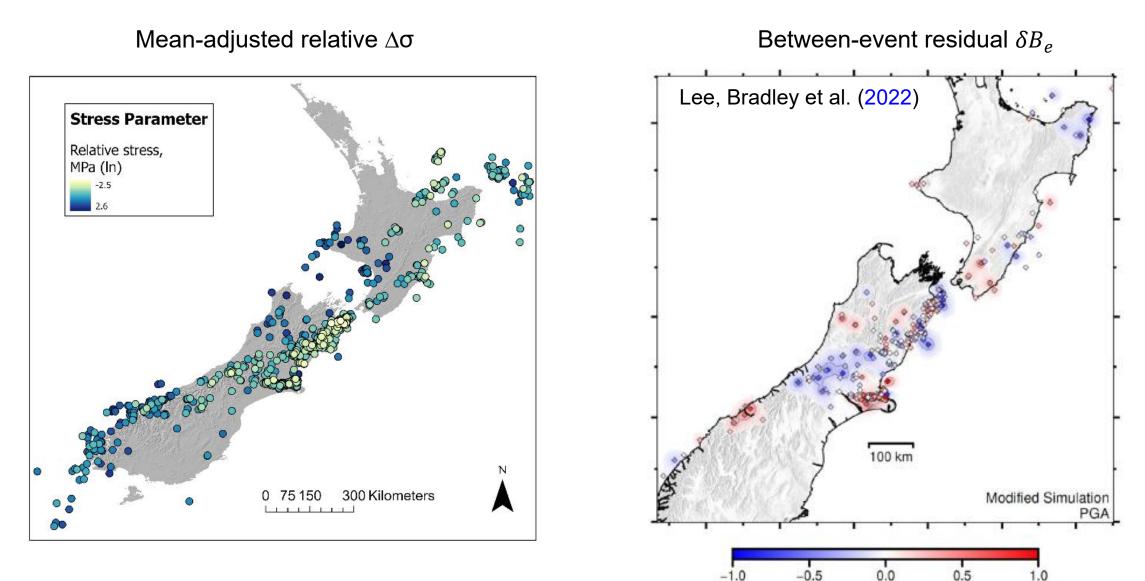
Ren et al., 2018 (no.:60)

Oth & Kaiser, 2014 (no.:70)

10¹

□ This study is for crustal events across NZ.

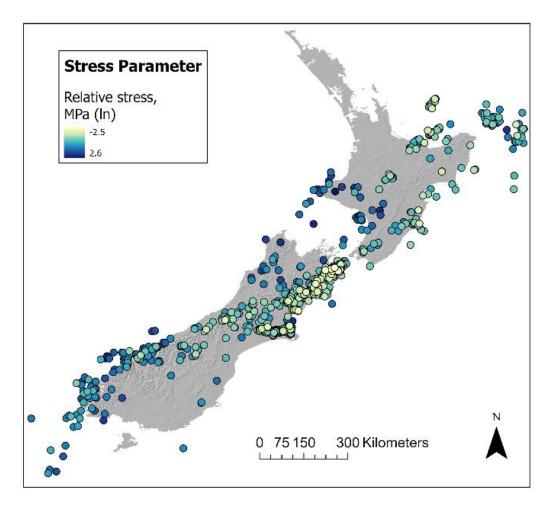
Stress Parameter $\Delta \sigma$ & Between-Event Term δB_e



Between-event residual, δB_e

9

Mean-adjusted relative $\Delta\sigma$

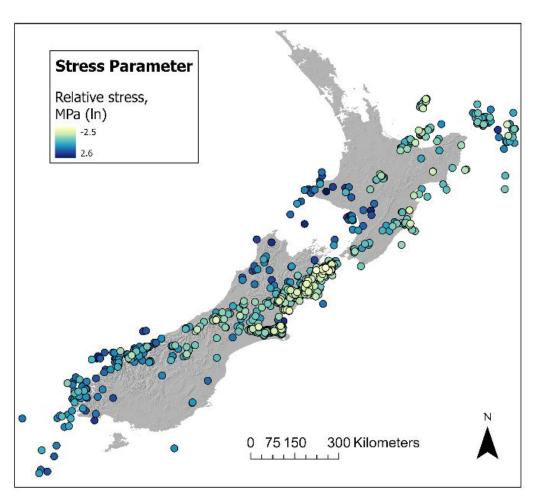


Global Moran's *I* test (Moran, 1950) via *ArcGIS Pro* gives a Moran's *I* Index of 0.31.

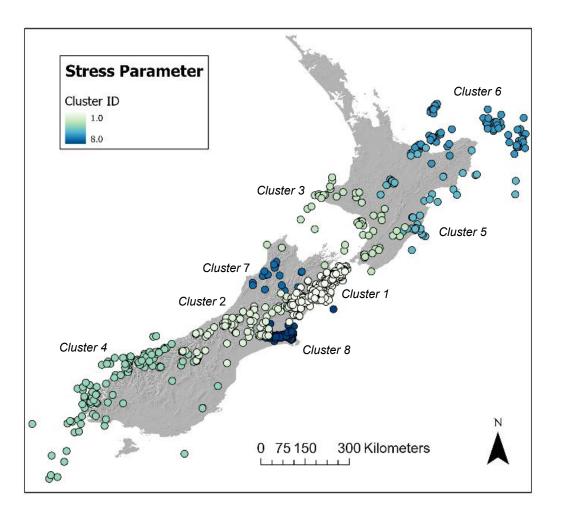
- The / Index ranges between -1.0 and 1.0: +: tendency toward clustering,
- □ -: tendency toward dispersion.

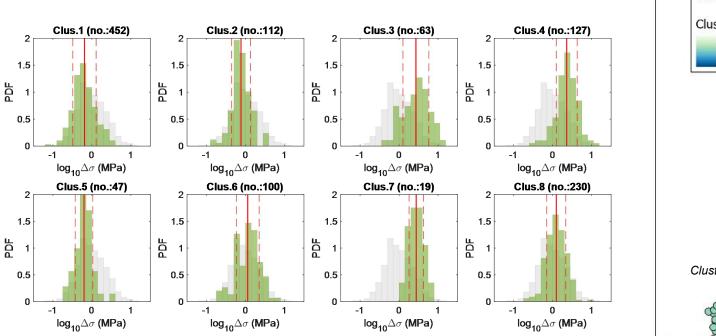
Statistical significance measures:
z-score=2.46 and p-value =0.01,
reject the null hypothesis (randomly distributed).

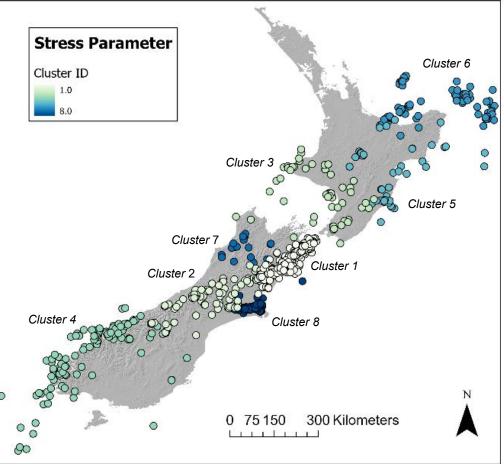
Spatial clustering

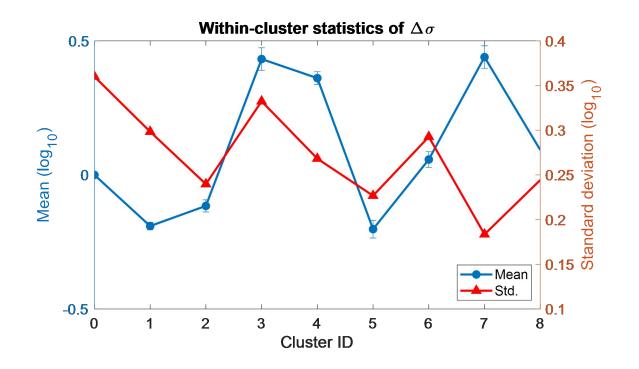


Mean-adjusted relative $\Delta \sigma$



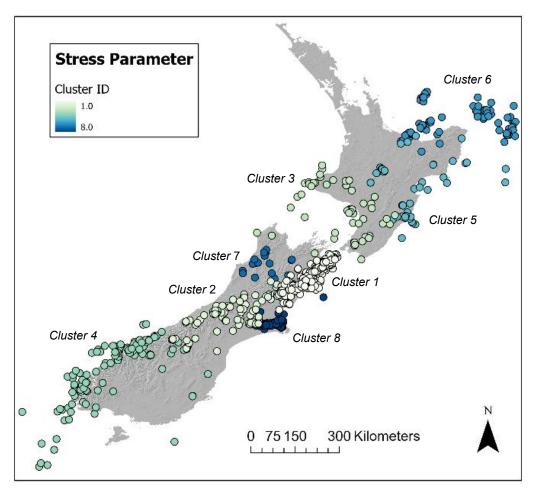






Std_{log10} for Cluster 1-8 is 0.30, 0.24, 0.33, 0.27, 0.23, 0.29, 0.18 and 0.24, respectively;

Reduction of 17%, 33%, 8%, 25%, 37%, 19%, 49%, and 32% relative to Cluster 0 (the entire dataset, i.e., 0.36).



Summary

 \Box $\Delta \sigma$ displays a statistically significant spatial clustering, which can explain a sizable portion of its variability.

Next steps:

□ To what extent the portion of $\Delta \sigma$ variability explained via spatial clustering can be translated to improvement in ground-motion prediction?

□ Refine Q structure in NZ;

Big data;

- Advanced algorithm;
- □ HPC;
- □ Automate and iterate;