

2021 QuakeCORE - NZSEE Conference Workshop

Large Scale Structural Testing – Past experiences and future research needs

Steel Buildings (heavy and light gauge)

Presentation by G Charles Clifton
13 April 2021

Past Experiences and Ongoing Needs

- Structural steel buildings (heavy and light steel) performed very well in Christchurch and Kaikoura earthquakes
- Therefore is further research needed?

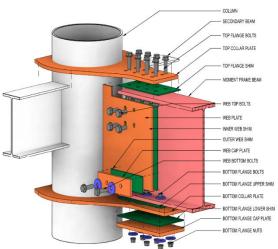
- USA prior to Northridge 1994 thought steel buildings will always perform well in earthquakes
- We know how wrong that was for rigid moment frames
 - We need to:
 - Replace luck with knowledge arising out of past earthquakes
 - eg why no column base yielding?
 - why did steel buildings self centre
 - Improve resilience of steel buildings post earthquake
 - Develop new systems,
 eg medium rise LSF buildings

Scope of Talk

- Focus on system response for earthquake
 - severe fire even more needs large scale testing
- Topics that require large scale experimental testing
 - cannot be covered by numerical modelling; or
 - requires experimental testing to validate numerical modelling
- Focus on multi-storey buildings and systems
- Heavy steel and light gauge steel

Buckling Restrained Brace Systems

- Widely used in New Zealand since 2011
- Proprietary item: performance by test
- Grout filled yielding core
- Gusset plate must remain stable in plane
- Very sensitive to accuracy of BRB construction
- Variable overstrength
- Issues over system stability
- MORE RESEARCH NEEDED


Simon_Devitt-AD6659 UoAScienceBldg

Optimised Sliding Hinge Joint Structural Systems

- Potential no damage system; first application currently in construction
- Research needs:
 - Time related changes to performance
 - Systems for external environments
 - Performance after fire
 - Manufacture of high performance disc springs
 - Measurement of installed bolt tension



Strength and Stiffness of Composite Floor Systems

- In-plane as diaphragms:
 - Remain elastic
 - How much cracking allowed?
 - How to model?
 - Design actions?
 - Diaphragm capacity?
- Out-of-plane in EBFs
 - Changes in brace and collector beam force
 - Influence on system performance and self centering

Column Base Rotational Strength and Stiffness

- Bare steel column plastic hinging at column bases leads to significant shortening
- Major repairs needed
- Need to know column base rotational strength and stiffness to keep column bases elastic
- Gravity system columns likely most critical; high compression, column shortening

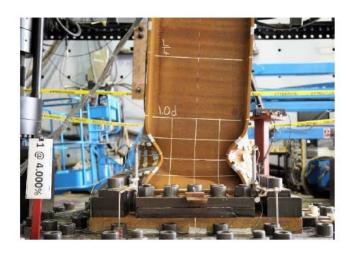
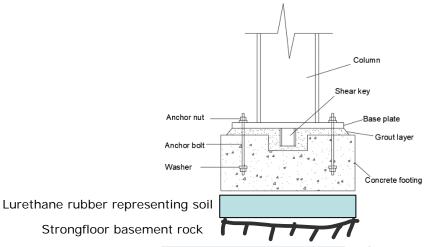
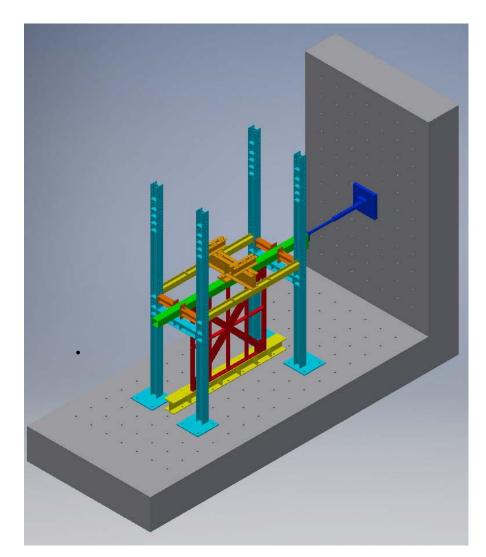



Figure 1: Column base yielding. Winston He Conference Paper

Steel Plate Shear Walls

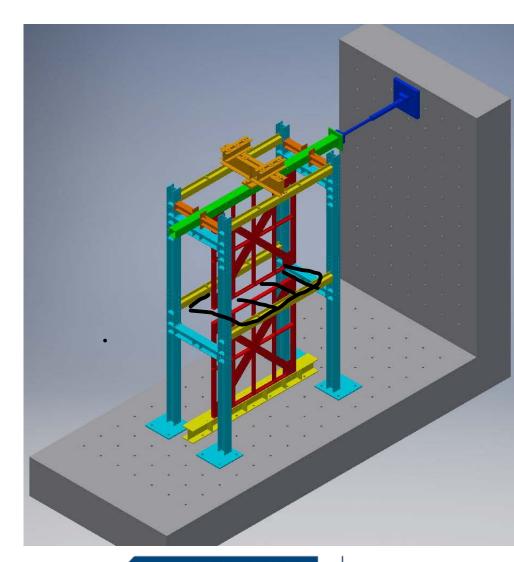
- Good solution for medium rise buildings
- Perforated plates to reduce strength
- Research needs around:
 - Enhanced self centering
 - Rapid replacement of shear wall panels after earthquake
 - Floor effects on wall



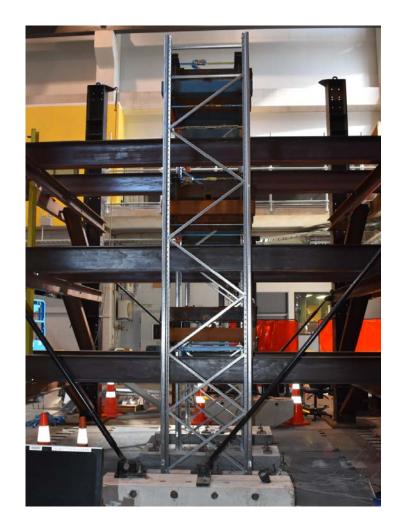
Figures from 2021 NZSEE Conference Paper No 4 by Lee

Light Steel Frame Seismic Resisting Systems

- Stacked X braced shear walls
- Medium rise
- Aim to make self centering up to around 1.5% drift
- Research just getting underway
- Includes weight of supported floors
- 1 storey and 2 storey options with floors between



Light Steel Frame Seismic Resisting Systems


- Stacked X braced shear walls
- Medium rise
- Aim to make self centering up to around 1.5% drift
- Research just getting underway
- Includes weight of supported floors
- 1 storey and 2 storey options with floors between

Pallet Racking Systems

- Friction slipper system developed for cross-aisle direction seismic resilience
- Now working on similar system for down-aisle direction seismic resilience
- Requires full scale shake table testing following component testing to confirm properties

