INVESTIGATING THE EFFECT OF STIFFNESS ON THE SEISMIC PERFORMANCE OF BUILDINGS

Liam Pledger

Supervisors: Santiago Pujol & Reagan Chandramohan

28 June 2023

DO STIFFER BUILDINGS PERFORM BETTER?

VS

$V_b = 0.3W$
$\mu = 4$
$\Delta_{des} = 2.5\%$

LITERATURE REVIEW

1. LACK OF QUANTITATIVE EVIDENCE

2. "ACCELERATION-SENSITIVE" ELEMENTS

1. LACK OF QUANTITATIVE EVIDENCE

Building models

- Drift limit: 2.5%, 2.0%, 1.0%, 0.5%
- 3, 6, 10 and 20 storeys
- RC wall, RC frame, Steel MRF, BRBF

LITERATURE REVIEW

1. LACK OF QUANTITATIVE EVIDENCE

2. "ACCELERATION-SENSITIVE" ELEMENTS

1. "ACCELERATION-SENSITIVE" COMPONENTS

Fragility curve for NSE

Engineering demand parameter

BENEFITS OF LARGE-SCALE TESTING.

1. STRUCTURE-NSE INTERACTIONS

2. ADDITIONAL DATA

3. VALIDATION/CALIBRATION OF SEISMIC LOSS