

Tate Lloyd Jones Kimpton

Supervisors:

Pablo Higuera

Colin Whittaker

Liam Wotherspoor

Agenda

BACKGROUND
OBJECTIVES & SCOPE
METHODOLOGY
CURRENT PROGRESS

Background

Exposure

Source: Downes et al., 2017

Geographical Relevance

- Pacific Ocean (Pacific Rim)
- Tectonic Boundaries (Earthquakes & Volcanoes)
- Astride Pacific and Australia Plate (Puysegur Trench, Southern Alps, Hikurangi Trench)
 - 80% of Mw =8.0 Earthquakes on Pacific Rim

Sources

- Distant: South America, Central America, Aleutian Islands, Kamchatka Peninsula, Japan, Solomon Islands
- **Regional**: Southern New Hebrides, Southern Kermadec Subduction Zone, Hjort Trench
- Local: Hikurangi Trench, Australian Plate Rupture Faults, Wairarapa Fault, Puysegur Trench

Background

Historical Significant Tsunami

Year	Month	Source	Number of Observations	Maximum Intensity	
1855	January	Wairarapa (earthquake)	26	Х	
1868	August	Southern Peru (earthquake)	88	Х	
1877	May	Northern Chile (earthquake)	51	VIII	
1883	August	Krakatoa, Indonesia (volcano)	28	V	
1895	July	Pigeon Bay, Canterbury (landslide)	1	VIII	
1924	July	Chatham Islands (unknown source)	7	VIII–IX	
1931	February	Hawke's Bay (earthquake and landslide)	5	VIII–IX	
1947	March	Poverty Bay (tsunami earthquake)	30	Х	
1960	May	Chile (earthquake)	129	IX	
1964	March	Alaska (earthquake)	35	V	
2003	August	Charles Sound, Fiordland (earthquake and landslide)	2	VIII	
2010	February	Chile (earthquake)	36	IV	
2011	March	Japan (earthquake)	96	IV	
Significance here is defined according to the number of locations where impact was observed and their corresponding intensity. Criteria used for this selection were intensity ≥ 8 or observations ≥ 20 .					

Source: Downes et al., 2017

Background

Historical Tsunami

Written History Tsunami Events

BACKGROUND \rightarrow OBJECTIVE & SCOPE \rightarrow METHODOLOGY \rightarrow PROGRESS

Background

Quantitative Tsunami Wave Height Estimates

Source: Power, 2013

BACKGROUND \rightarrow OBJECTIVE & SCOPE \rightarrow METHODOLOGY \rightarrow PROGRESS

Damage

https://www.flickr.com/photos/cambridgeuniversity-engineering/5533852339

Mechanisms

- Primary impacts
 - Drag, lift and inertia caused by the hydrostatic and hydrodynamic impacts
 - Depend on the shape and characteristics of the structure, the flow depth and the flow characteristics.
- Secondary impacts
 - Result from dragging of objects, debris impacts, contamination, and scour around foundations
 - Water contact detrimental to infrastructure components (e.g., insulation, internal lining, electrical systems)

Damage Post-Tsunami Survey

- 2004 Indian Ocean, 2010 Chile, and the 2011 Japan Tsunami provide valuable empirical insight into the damage mechanisms and damage to infrastructure assets.
- Local Construction Standards

Source: PARI, 2009

Source: PARI, 2009

$\textbf{BACKGROUND} \rightarrow \textbf{OBJECTIVE \& SCOPE} \rightarrow \textbf{METHODOLOGY} \rightarrow \textbf{PROGRESS}$

		Damage surveyed following past tsunami events
	Bridges	 Scour and erosion of the fill around abutments, wing walls and piers Minor-moderate damage to bridge superstructure, mostly from debris impacts Complete washout of the bridge superstructure
	Ports & Harbours	 Damage to wharves from buoyancy and hydrodynamic forces Scouring of piers and breakwaters Debris impacts Damage to vessels
Transport	Rail	 Damage to rail tracks and ballast Debris deposited on tracks Damage to railway bridges Damage to overhead lines Damage to stations and facilities
	Roads	Scouring, including peeling of the road surfaceDebris Impacts

Impact Assessment Vulnerability Metrics

• **Damage Matrices**: Qualitative discrete damage approach measuring damage likelihood at various hazard intensities

Infrastructural	Flow Depth < 0.5m		Flow Depth 0.5m - 2m		Flow Depth >2 m		Information
Asset	Probability of Damage	Damage Type	Probability of Damage	Damage Type	Probability of Damage	Damage Type	Quality
Transportation <u>Roads</u>						Debris strikes, scour of base	
Pavement	Low	Silt and light debris coverage, ponding	Medium	Debris & sediment coverage, scour of weak base materials, removal of signage and markings, ponding	Medium- High	materials, lifting of carriage-way, removal of barriers and signage, cracking of pavement, liquefaction of base materials, ponding, debris and sediment coverage	High
Bridges	Negligible- Low	Superficial debris strikes	Medium	Some bank erosion, superficial debris strikes , sediment deposition, scour of footings, corrosion, washout of light timber structures	High	Debris and sediment deposition, erosion of adjoining banks, loss of signage and markings, side barriers bent or sheared, debris strikes, scour of footings, aggradation of waterway, widening of waterway separation of deck from footings, lateral distortion of super structure, separation of girders, washout of superstructure, corrosion, loss of utilities across bridge	High

Source: Williams (2016)

BACKGROUND \rightarrow OBJECTIVE & SCOPE \rightarrow METHODOLOGY \rightarrow PROGRESS

Impact Assessment Vulnerability Metrics

• **Fragility Functions**: Assesses the probability of incurring a level of damage based on an imposed hazard intensity. Collection of cumulative distribution functions, each portraying a certain level of damage (damage state).

Source: Williams et al., 2020

 $\textbf{BACKGROUND} \rightarrow \textbf{OBJECTIVE \& SCOPE} \rightarrow \textbf{METHODOLOGY} \rightarrow \textbf{PROGRESS}$

Impact Assessment

Vulnerability Metrics

• **Vulnerability Functions**: Relates the hazard intensity measure directly to the expected financial loss (proportional to degree of damage inflicted). Depicted as single cumulative distribution function.

Vulnerability Function for Building Material

$\textbf{BACKGROUND} \rightarrow \text{OBJECTIVE \& SCOPE} \rightarrow \text{METHODOLOGY} \rightarrow \text{PROGRESS}$

Published Literature Covering Tsunami-Infrastructure Fragility Functions

Infrastructure Asset

Infrastructure Asset	Attributes	Tsunami Hazard Intensity Measure (HIM)	Data Source	Tsunami Event	Reference
Transport					
	Construction type,	Inundation Depth (above the base of the deck)	Post-event damage survey	Indian Ocean, 2004	(Horspool & Fraser, 2016)
Bridges	3 damage states	Inundation Depth	Post-event damage survey	Tohoku, 2011	(Eguchi et al. 2013)
	3 damage states	Inundation Depth (above the base of the deck)	Damage Simulations	Tohoku, 2011	(Akiyama et al. 2013)
	6 damage states Velocity, Inundation Depth, Momentum Flux, Moment of Momentum Flux		Damage Simulations	-	(Qeshta et al., 2021)
	3 damage states	Inundation Depth	Post-event damage survey	Tohoku, 2011	(Horspool & Fraser, 2016)
Roads	3 damage states	Inundation Depth, Distance from the coastline, Distance from landward inundation extent	Post-event damage survey	Multiple	(Williams et al., 2020a)
	3 damage states	Inundation Depth	Post-event damage survey	Palu, 2018	(Williams et al., 2020b)
Water					
Wastewater Facility	1 damage state	Inundation Depth	Post-event damage survey	Tohoku, 2011	(Horspool & Fraser, 2016)
Buildings	2 damage states	Inundation Depth	Post-event damage survey	Tohoku, 2011	(Eguchi et al. 2013)
Energy					
	Construction type,	Inundation Depth (as a ratio to pole height)	Expert judgment	Multiple	(Horspool & Fraser, 2016)
Utility Poles	3 damage states	Inundation Depth	Post-event damage survey	Palu, 2018	(Williams et al., 2020b)
Substations	Indoor/outdoor components, 3 damage states	Inundation Depth	Expert judgment	Multiple	(Horspool & Fraser, 2016)
Fuel Storage Tanks	Probability of damage	Inundation Depth	Post-event damage survey	Tohoku, 2011	(Hatayama, 2014)

BACKGROUND \rightarrow OBJECTIVE & SCOPE \rightarrow METHODOLOGY \rightarrow PROGRESS

Fragility Function Gaps

- Post-Tsunami Surveys
 - Sensitive to infrastructure constructions standards
 - Sensitive to local topographic/bathymetric and tsunami characteristics
- Hazard Intensity Measures (HIMs)
 - Common use of Inundation Depth due to easy identification during survey
 - Forced based HIMs (e.g., momentum flux) have more significant contribution to damage
 - HIMs used in tsunami-building fragility functions:
 - Inundation Depth
 - Peak Velocity
 - Froude Number
 - Momentum Flux
 - Quasi-Steady State Tsunami Force
- Infrastructure Components
 - Few infrastructure components represented in fragility functions
 - Transit Roads, railways, and bridges
 - Power & Communications Transmission facilities, electric lines, fiber optics
 - Subterranean Pipelines, sewer, waterlines

Literature Review Recap

- New Zealand is in an exposed location and significant tsunami are predicted to occur within a 100-yr return period
- o Infrastructure can become severely damaged from primary and secondary tsunami effects
- The current coverage of tsunami impact assessments applicable to New Zealand are very limited
- Current physical and numerical modelling is limited for tsunami impacts and currents on a wide range of infrastructure components.

Objective

Understand the fragility of New Zealand's coastal lifeline infrastructure to tsunami attack, and hence provide component level mitigation measures to better protect our infrastructure assets

Geospatial Identification of Vulnerable Components

Development of Component-level Fragility Functions

Design of Localised Mitigation Measures

Task 1: Geospatial Identification of Vulnerable Infrastructure Components

Identify relevant geospatial databases of infrastructure assets (consider transportation, water, telecommunications and energy)

Steps: Develop inundation models: 1) Bathtub inundation model, 2) Runup inundation model

Using QGIS and Geopandas coding methods identify the most vulnerable infrastructure components in the most exposed locations.

 $\mathsf{BACKGROUND} \to \mathbf{OBJECTIVE} \And \mathbf{SCOPE} \to \mathbf{METHODOLOGY} \to \mathsf{PROGRESS}$

Task 2: Development of Componentlevel Fragility Functions

Perform physical experiments and numerical modelling to determine damage on components when subject to tsunami impacts, extreme currents and secondary effects such as debris impacts.

Steps:

Numerical modelling will complement the physical modelling to better understand phenomena that is harder to achieve in physical modelling due to scale effects.

Generate new component-level fragility functions that can be imported into different risk modelling packages.

 $\mathsf{BACKGROUND} \to \mathbf{OBJECTIVE} \And \mathbf{SCOPE} \to \mathbf{METHODOLOGY} \to \mathsf{PROGRESS}$

Task 3: Design of Localised Mitigation Measures

Explore possible mitigation measures (predominantly at the component level) to protect infrastructure assets from tsunami attack more effectively.

Steps: Tested both physically and numerically to determine whether improvements have been made.

Produce design recommendations at the component level.

 $\mathsf{BACKGROUND} \to \textbf{OBJECTIVE \& SCOPE} \to \textbf{METHODOLOGY} \to \mathsf{PROGRESS}$

Geospatial Identification of Vulnerable Infrastructure Components

Bathtub	Number of Buildings	Total Length of Roads (km)		
1	0	0		
2	129	2.23		
3	390	7.52		
4	1006	19.02		
5	1456	25.65		
6	1812	29.96		
7	2333	35.01		
8	3590	45.39		

 $\mathsf{BACKGROUND} \to \mathsf{OBJECTIVE} \And \mathsf{SCOPE} \to \mathsf{METHODOLOGY} \to \mathbf{PROGRESS}$

Numerical Model Validation

 $\mathsf{BACKGROUND} \to \mathsf{OBJECTIVE} \And \mathsf{SCOPE} \to \mathsf{METHODOLOGY} \to \mathbf{PROGRESS}$

Numerical Model Validation

 $\mathsf{BACKGROUND} \to \mathsf{OBJECTIVE} \And \mathsf{SCOPE} \to \mathsf{METHODOLOGY} \to \mathbf{PROGRESS}$

Numerical Model Validation

	Simulation	Cell Size	Courant Number	Mesh Size	Phase Shift of Time Series
Pressure Gauges	5	1 cm x 1 cm	0.25	Symmetrical	-0.016
Surface Elevation Gauges	3	2 cm x 2 cm	0.25	Full	0
Overall	1	2 cm x 2 cm	0.15	Symmetrical	-0.016

Physical Modelling

Culverts

References

- Downes, G., Barberopoulou, A., Cochran, U., Clark, K., & Scheele, F. (2017). The New Zealand Tsunami Database : Historical and Modern Records. Seismological Research Letter, 88(2), 342–353.
- Roger, J. (2020). New Zealand Tsunami Database: Historical and Modern Records. (https://data.gns.cri.nz/tsunami/)
- Goff, J.R. (2008). The New Zealand Palaeotsunami Database: NIWA Technical Report, No. 131, 24 p
- Power, W. (2013). Review of Tsunami Hazard in New Zealand (2013 Update). August.
- PARI. (2009). Urgent Survey for 2011 Great East Japan Earthquake and Tsunami Disaster in Ports and Coasts. PARI Technical Note 1231.
- Williams, J. H. (2016). Impact assessment of a far-field tsunami scenario on Christchurch City infrastructure. http://ir.canterbury.ac.nz/handle/10092/12037
- Williams, J. H., Wilson, T. M., Horspool, N., Paulik, R., Wotherspoon, L., Lane, E. M., & Hughes, M. W. (2020). Assessing transportation vulnerability to tsunamis: Utilising post-event field data from the 2011 Tohoku tsunami, Japan, and the 2015 Illapel tsunami, Chile. Natural Hazards and Earth System Sciences, 20(2), 451–470. https://doi.org/10.5194/nhess-20-451-2020
- Masuda, M., Williams, C., Shahkarami, A., Rafique, F., Bryngelson, J., & Kondo, T. (2012). Tsunami Vulnerability Function Development Earthquake Based on the in Japan Tohoku Earthquake in Japan. World Conference on Earthquake Engineering.

THANK YOU

QUESTIONS?