

QuakeCoRE Infrastructure Resilience Webinar series

### Analysis of Transport Network Criticality under Flooding in Ho Chi Minh City, Vietnam

Yi Wang Department of Civil and Natural Resources Engineering University of Canterbury, New Zealand





### Transport infrastructures and disaster risks



Source: Koks, Elco E., et al. "A global multi-hazard risk analysis of road and railway infrastructure assets." Nature communications 10.1 (2019): 1-11.



**Direct damages** from disasters to the power generation and transport infrastructure are estimated at **US\$18 billion** a year in low- and middle income countries globally.

But the estimated cost of the **associated disruption to services** (energy and transport) ranges **from US\$391 billion to US\$647 billion**, at least 20 times larger.



### Critical infrastructure services



# Disruptive Technology for Public Assets Governance



A research collaboration with the World Bank Group and Ho Chi Minh City, Vietnam

#### **Singapore ETH-Centre**

**Future Resilience Systems:** Dr Jonas Joerin, Dr Peter Lustenberger, Dr. Yi Wang **Future Cities Laboratory:** Prof Dr Stephen cairns, Michael Joos,



ur-scape adapted to HCMC for a flooding with 100-year return period

# Incorporate resilience thinking into public infrastructure planning



A research collaboration with the World Bank Group and Ho Chi Minh City, Vietnam



### Identification of critical infrastructures





#### **Exposure and disruption**

- Functionality loss
- Road closure due to "heavy
- flooding" (inundation depth>0.3 m)
- Highest cell value (water level)



An undirected graph coloured based on the betweenness centrality of each vertex from least (red) to greatest (blue).

#### **Critical component Analysis**

- Topological analysis
- Network science indicators
- Before/after a disruptive event

<sup>1</sup> FATHOM. "Fathom-Global." from https://www.fathom.global/fathom-global (2019).

<sup>2</sup> Ramm, Frederik, et al. "OpenStreetMap Data in Layered GIS Format." Version 0.67 (2014).

<sup>3</sup> Zilske, Michael, Andreas Neumann, and Kai Nagel. OpenStreetMap for traffic simulation. Technische Universität Berlin, 2015.



## Topological analysis

Edge Betweenness Centrality  $C_B(e)^1$ 

$$C_B(e) = \sum_{s \neq t \in V} \frac{\sigma(s,t|e)}{\sigma(s,t)}$$

- Measures the extent to which an edge lies on the shortest paths between any pair of nodes.
- A high  $C_B(e)$  shows that there are more shortest paths passing through this edge.

OD-based (Subgraph) Betweenness Centrality  $C_{B,OD}(e)^2$ 

$$C_{B,OD}(e) = \sum_{s \in S} \sum_{t \in T} \frac{\sigma(s,t|e)}{\sigma(s,t)}$$

• More realistic from a demand-aware perspective (e.g., critical services by considering their own service area)

<sup>2</sup> Gauthier, Pauline, Angelo Furno, and Nour-Eddin El Faouzi. "Road network resilience: how to identify critical links subject to day-to-day disruptions." *Transportation research record* 2672.1 (2018): 54-65.



<sup>&</sup>lt;sup>1</sup> Newman, M. (2018). Networks, Oxford university press.







**OD-based edge betweenness centrality weighted by population density** 













### More things to consider...

#### Identification of potential critical infrastructures:

- Requires all relevant institutions (e.g., police, fire, medical, and emergency management)
- For ensuring critical services relevant to survival, safety, and security needs of community members.

#### Implications:

- Optimizing road space allocation (e.g., limit parking)
- Designing permanent flood protection measures
- Improving road drainage (e.g., cleaning roads and draining ducts)





#### Future research

#### **Resilience quantification and modelling for transport systems**

• Quantitative indices and methods (e.g., efficiency, safety, equity)

#### Topological analysis

#### Roots in network/graph theory

- Captures the topological properties of transportation networks
  - Betweenness centrality (C<sup>B</sup>): captures importance of a place as a pass-through connection
  - Closeness centrality (C<sup>C</sup>): captures accessibility & proximity of a place

System-based analysis

- Demand-supply interactions as well as travel behaviour are considered (via traffic assignment modelling).
- Indices are system performance (traffic)-based
  - Traffic volume (throughput)
  - Unified Network Performance Measure<sup>1</sup>
  - Network Robustness Index<sup>2</sup>

Requires extensive data (e.g., travel demand, road capacity)
More realistic representation of the resulting traffic

Limited data hungriness, computationally realistic
Do not allow for behavioural responses to a disruption

<sup>1</sup> Qiang, Qiang, and Anna Nagumey. "A unified network performance measure with importance identification and the ranking of network components." *Optimization Letters* 2.1 (2008): 127-142. <sup>2</sup> Scott, Darren M., et al. "Network robustness index: A new method for identifying critical links and evaluating the performance of transportation networks." Journal of Transport Geography 14.3 (2006): 215-227.



### Future research

#### **Resilience quantification and modelling for transport systems**

• Interdependencies among systems (e.g., power, communication) E.g., interconnected cars failure<sup>1</sup>



<sup>1</sup> Georgia Institute of Technology and Multiscale Systems, Inc. "Hackers could use connected cars to gridlock w hole cities", from <a href="https://www.eurekalert.org/pub\_releases/2019-07/giot-hcu072819.php">https://www.eurekalert.org/pub\_releases/2019-07/giot-hcu072819.php</a>



# Thank you

Yi Wang <u>y.wang@canterbury.ac.nz</u>