

Societal expectations for the seismic performance of buildings

Reflections for critical infrastructure

Background

New Zealand has gone through a period of unprecedented losses from seismic activity, which has highlighted shortcomings in the seismic settings of our building regime.

Engineering knowledge in designing for earthquakes has advanced significantly since the current approach to building design was developed in the 1970s.

New Zealand's urban landscape has also changed profoundly with more multistorey development, in-fill housing etc.

New Zealand's Building Code has not kept up with these developments. New Zealand's seismic thresholds for damage are relatively low, meaning Kiwis are exposed to considerable economic and social disruption after earthquakes.

A recent review commissioned by MBIE from the Seismic Risk Working Group raised fundamental issues about Building Code's seismic regime objectives and who makes the value tradeoffs required.

Project Team

Charlotte Brown
Resilient Organisations

Shannon Abeling
University of Auckland

Sophie Horsfall
Resilient Organisations

Helen Ferner

Hugh CowanHugh Cowan Consulting

Steering group

- Sarah Beaven, University of Canterbury
- Dave Brunsdon, Krestel
- Caleb Dunne, EQC
- Ken Elwood, MBIE/EQC

- Derek Gill, NZIER
- **John Hare**, Holmes Consulting Group
- Jo Horrocks, EQC
- Rob Jury, Beca

What we did

INTERVIEWS

32 individuals who represented different:

- seismic hazard zones
- geographies
- socioeconomic groups
- industry groups
- ownership / occupancy perspectives
- cultural contexts

FOCUS GROUPS

6 geographically based groups

- urban centres & towns
- different seismic hazard levels

Groups comprising 3-7 individuals who represented:

- local civil defence
- business community
- health sector
- welfare sector
- environmental interests
- Māori world view

Focus Group - City/Town Map

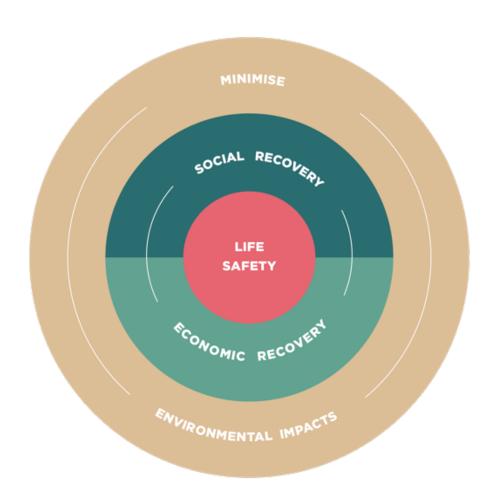
- How important is it to preserve live within each building?
- 2. Which buildings are most important to reduce **social impacts**?
- 3. Which buildings are most important to reduce **economic impacts**?
- 4. For a new building, how much functionality should each building have in the given timeframe?
 - 1 day
 - 1 week
 - 1 month
 - 3 months
 - 12 months

Focus Group - Risk Matrices

New Zealand's Expectations on Seismic Resilience of Buildings

no way - risk is so great that it can't be justified I can put up with this but would like it to change ACCEPTABLE part of daily life - these things happen

	CONSEQUENCE (HUMAN)							
Average FREQUENCY and LIKELIHOOD	Low impact on human wellbeing (capacity to work, study recreate, socialise)	• < 1 in 20,000 people injured	III No or minimal fatalities Between 1 in 20,000 and 1 in 2,000 people injured	IV Multiple fatalities > 1 in 2,000 people injured Education facilities prolonged closures Limited or no access to social or recreational activities for significant period Significant and ongoing mental health challenges (>12 months)				
Less than once every 2500 years (extremely rare) <2% chance in typical building life (extremely unlikely)								
Once every 1000-2500 years (very rare) 2-5% chance in typical building life (very unlikely)								
Once every 250-1000 years (rare) 5-20% chance in typical building life (unlikely)								
Once every 100-250 years (occasional) 20-50% chance in typical building life (less than likely)								
Once every 50 - 100 years (sometimes) 50-100% chance in typical building life (likely)								
Once every 0-50 years (often) Probably once in typical building life (very likely)								



Seismic resilience performance objectives

Seismic resilience performance objectives

1: LIFE SAFETY

Avoid mass casualty events
Protect vulnerable persons
Ensure safety at mass gathering points
Preserve high value skills and resources
Support immediate response activities

2: SOCIAL RECOVERY

Ensure equitable access to essential goods and services
Enable effective governance
Have plans to connect
Return a sense of normalcy
Retain a sense of place and cultural identity

3: ECONOMIC RECOVERY

Restore enabling services and industries Enable people to work Build business confidence

4: MINIMISE ENVIRONMENTAL IMPACT

Minimise waste generation Avoid hazardous waste or potential public health risks Reduce embodied carbon

Recovery progression

Recovery Progression

BUILDING TYPE	1 DAY	1 WEEK	1 MONTH	3 MONTHS	12 MONTHS
Critical Infrastructure (water, electricity, etc)					
Hospital					
Community Meeting Place					
Aged Care Facility					
Supermarket					
Government/Council Office					
Food Production Facility					
Motel					
Residential Apartments/Houses					
Warehouse					
School					
Stadium					
Restaurant/Pub					
Manufacturing (non-essential)					
Commercial Office Block					
Retail					
Museum					
Tourist Attraction					

TOWN/CITY MAP

COLOUR KEY:

NOT FULLY FUNCTIONAL

Risk Tolerance

Risk Tolerance

TOLERANCE FOR RISK

COMMUNITIES WITH HIGHER TOLERANCE FOR RISK

LOW hazard zone

HIGH hazard zone

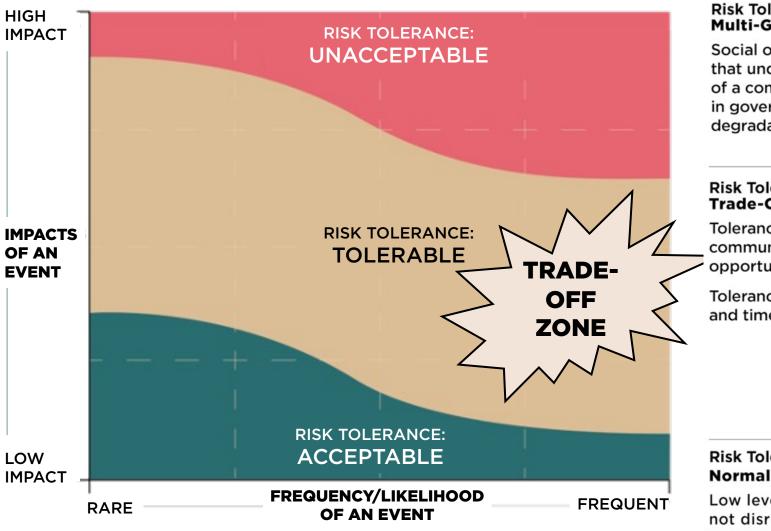
Geographically ISOLATED

NOT geographically ISOLATED

HIGH density built environment

LOW density built environment

LOW recovery capacity


HIGH recovery capacity

Risk Tolerance

Risk Tolerance: Unacceptable Multi-Generational Impacts

Social or environmental impacts that undermine the social fabric of a community, e.g. loss of trust in governance, environment degradation.

Risk Tolerance: Tolerable Trade-Off Zone

Tolerance depends on cost to community today and opportunities for co-benefits.

Tolerance varies through space and time.

Risk Tolerance: Acceptable Normal Maintenance

Low levels of damage that do not disrupt regular building use.

Tolerable Risks: Managing trade-offs

INCENTIVES

Long-term perspective

Return on investment

Buoyant rental and real estate market

HINDERANCES

Competing priorities

Supressed rental and real estate market

Perception of cost

Concern over where costs fall

Perception of safety

Tight insurance market

Co-benefits

Insurance availability

Assumed government support post-event

Pooled risk across business operations

Neighbourhood effects

Government regulations or incentives

Reduced down time and rebuild cost

Infrastructure damage

Lack of trust in engineering and construction sector

Seismic resilience in context

Seismic resilience in context

SAFETY

Fire safety Safety day to day (Wellbeing) Earthquake life safety

WELLBEING

Acoustics

Lighting Temperature Access to amenities Indoor air quality (#Safety) Accessibility (Functionality)

FUNCTIONALITY

Usability Accessibility (Wellbeing) Adaptability (*Longevity)

LONGEVITY

Durability (Sustainability) Adaptability (Functionality) Repairability

ENVIRONMENTAL SUSTAINABILITY

Embodied carbon Operational carbon Material choice Durability (***Longevity*)

AESTHETIC AND CULTURAL VALUE

Architectural design (Functionality and Wellbeing) Heritage (Longevity)

COST

Capital cost Whole of life cost (Sustainability and Longevity) Return on investment

Reflections for Critical Infrastructure

- Method some transferrable elements
- Findings are generally transferrable but specifics for infrastructure would be useful, especially around recovery timelines
- More nuance around risk tolerance, specific to infrastructure disruption may be useful (e.g. is there anything beyond hazard zone, geographic isolation, density built environment and recovery capacity?)
- Incentives and disincentives for resilience investment may be different due to different ownership structures and financing of infrastructure?
- Interesting to explore infrastructure resilience relative to other built environment priorities - tension between sustainability / community amenity

Link to report and policy brief

https://www.resorgs.org.nz/our-projects/risk-and-resilience-decision-making/nzsee-resilient-buildings-project/

Questions + Discussions

