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Power Issues during Ruapehu 1995 T Whare Wananga o Waitaha
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Previous UC work (Wardman et al.)
" Volcanic impacts on power o i X
systems S w
" Electrical properties of ash £ S
= Physical modelling of 3
insulation flashover o8 MU i

Tephra Thickness (mm)

Probability of tephra induced flashover as a function of wet
or dry tephra thicknesses (from Wardman et al., 2013)

= 3 mm wet/damp ash causes impact

= Approach for modelling electrical infrastructure
exposed tO tephra (G Wi|Son, 2015) (Weir, 2021) Flashover across composite insulator

in lab (from Wardman et al., 2013)
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= Multi-phase, multi-hazard,
multi-infrastructure

= Quantifies dynamic
volcanic risk

= Electricity is important

A

Figure 4.5 The direct impact to electricity transmission and distribution infrastructure in the Taranaki region of
Aotearoa-New Zealand. The impact is shown at volcanic activity phase 6p (i.e. at the end of the eruption sequence) for
each of the nine scenarios.

a) Impact on electricity infrastructure in Taranaki region
for various volcanic scenarios (from Weir, 2021)
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b) Impact on multiple critical infrastructure in Taranaki
region for indicative volcanic scenario (from Weir, 2021)
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Project Direction and Objectives

A) Assess component vulnerability of power systems exposed to B) Develop power system representation to facilitate
volcanic hazards by considering impact on plant & equipment, identification of critical aspects and understanding of
people and processes during a multi-phase volcanic event resilience for a power system exposed to volcanic hazards

Component Vulnerability 2
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Fig. 1 Empirical framework for deriving volcanic vulnerability and
fragility functions for critical infrastructure sectors
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Existing geospatial info
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(G. Wilson et al., 2017)

Mitigations / Treatments

4

Event progression

Recovery

(HIM) N — ~. Policy and Processess
| | Ke _Vulnerability Assessment

b / ==

v g / ~——_ \

Function fittin S ! T ——— - -7 Power System Resilience
g B \ / Y 3

¢ e \ /

o \ \ 4
Document function E} A H
parameters, N Risk Assessment o Pre-event/System response




UNIVERSITY OF
CANTERBURY

Component and System Definition b e

= Case study Taranaki region “system Definition”

Existing geospatial info

= System Definition

Asset Information

= Performance / loss of service

Policy and Processess

= System Operation and Configuration

= People, equipment (to do work) and work
processes

Image from https://www.powerco.co.nz/what-we-
do/our-projects/improving-how-we-manage-our-assets



Developing (Component Vulnerability) Models
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Impact data
(e.g., post-eruption, <

= Framework by G. Wilson et al. (2017) Wit

= Qualitative / Quantitative v v

Hazard intensity metri:c

Impact metric (IM) (HIM)

= Physical modelling (testing)

= Risk assessment methods v

Function fitting
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Fig. 1 Empirical framework for deriving volcanic vulnerability and
fragility functions for critical infrastructure sectors

(G. Wilson et al., 2017)
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Disaster Forecast and Estimation [€

Component Vulnerability =

Event

Power System Resilience \

» Pre-event Nt Al AN IO .. S
] | Investment / Response / : Restoration /
= Event progression , Y 4

» Response / Recovery

Eruption scenario, weather,

B I g
resourd ng etc * Vegetation Management * Emergency Load Shedding * Microgrids Operation
* Undergrounding *  Special Protection Systems | |+ Distribution Automation
SySte m pa rts an d | nte rna I / * Elevating substation, etc * Islanding Schemes, etc * Mobile Transformers, etc

exte rna I | nte rd e pe N d enc | es High level timeline for power system response to natural hazards (image from Wang et al., 2016)
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Depending on the system hardening, it can last for several years

Constant forecasting and situational
awareness required

; PSPS event t', Operational Response

. High fire-threat weather identified

Cleaning electrical insulators (image from Wardman et al., 2012) Mitigation timeline to safeguard power systems against wildfires (image from Zuniga Vazquez et al., 2022)
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= Component vulnerability alongside
system resilience in the context of
power systems and volcanic hazards

= Building on work in Taranaki region for
detailed examination of power system
response to volcanic scenarios

= Systems approach to ensure coverage
of topic while examining local & system
level response & mitigations
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= System Design
= Plant Design

= Equipment Design
and Use

= System Operation
" Process Adaptation
= Temporary Works

= Situation Monitoring

ST
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Mitigation timeline to safeguard power systems against wildfires (image from Zuniga Vazquez et al., 2022)
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Considering tephra In the context of ISO
31000:2018

= Avoiding the risk - de-energise circuits

= Removing the risk source - cleaning,
tephra attachment prevention

" Change the likelihood - modify insulation sz
design (low hanging fruit?) & -

= Change the consequences — redundancy

= Retain the risk by informed decision -
monitoring and analysis

Cleaning electrical insulators (image from Wardman et al., 2012)



UNIVERSITY OF

Final thoughts (for now) T s
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And what about The 'Future' - technology, maintenance, operation etc.
= Will development resolve issues 'naturally’?
= Will development allow better system management?

= Will development protect against multiple hazards and risks?
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Image from https://www.edsoforsmartgrids.eu/home/why-smart-grids/



