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Presentation overview

 Research pathway \

« Existing loT ecosystem

* loT technologies for Ambient Intelligence apps
« Devices and applications
 Communication networks

» Data processing
« Time series data analyses
« Sensor data uncertainty
« Sensor data anomaly detection
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Research pathway

* Ubiquitous Computing \

« Computers are everywhere, and its services follow
users

 Ambient Intelligence
« Ubiquitous, adaptive, context aware, personalised

* Internet of Things

 Device to device communication, at first, to
iInterconnected everything together

 End-Edge-Cloud architecture, and cloud/edge
computing
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Current loT eco-system

The Internet of Things
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Current loT eco-system

 Hierarchical and
% iIsolated:

-  End device ->

Corested Facinmss ".II

- edge -> cloud
+ Challenges:
Edge Computing

.+ Interconnectivity
 Interoperability

« Scalability
| ... * Cross layer
‘ 3 design

Edge Computing



 The goal is to achieve unobtrusive,
ubiquitous sensing and interaction
« with immediate physical environment, human,
or other “Things”
* Challenges
« Ubiquity: small physical size
« Longevity: long operating life
» Interoperability: for large scale, distributed,
remote monitoring and control
* Intelligence: real-time data analytics




Hardware platform - AWSAM

« Auckland Wireless Sensing and Actuating Mote

« Ultra low power, miniaturised sensor node:

cc430 based wireless mote with 4KB RAM & 32KB flash
Physically small and unobtrusive (35 mm x 28mm)

« Short communication range (100 meters)

« Short operating life (~10 hours)
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AWSAM-1&2 implementation

Smart Senso
Node Rev.A
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Building monitoring

» Structural health monitoring \

* Intelligent infrastructure
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Intelligent environments
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Pervasive healthcare

« Body area network (BAN) and personal area <

network (PAN) for pervasive healthcare applications
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Communication

« Wide varieties of communication \

technologies

 Short range RF (low power, long operating
life): RFID, Bluetooth, WiFi

- LPWAN (long range, low data rate): LoRaWAN, B i

Sigfox

 Backbone (high bandwidth, fast speed):
Cellular networks, Fibre

Proprietary and legacy networks

. Challenges

« What are the most suitable network(s) for your
applications?

-> Trade-offs in design
 How to provide intuitive and integrated services?
-> System level solution
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Data processing

« Data-driven or Knowledge-driven

« Data-driven: Typically machine learning based
* Robust against uncertainty and noise.
* Require large amount of labelled training data.

* Knowledge-driven: Typically exploiting prior expert knowledge to
build semantic or physics model.
« Semantic model has good representability
* Lack of the flexibility in dealing with uncertainties

« Both are able to achieve very good accuracy in lab test results

Challenges:
* Application specific
 Resource demanding — sensing, storing, transmitting, processing
« Data quality and uncertainty
 How to extract useful patterns and information
* Visualisation and interpretation
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Human activity recognition (HAR)

* loT (or specifically mobile/wearable) devices for
human activity recognition (HAR)

« Challenges:

« Human motions/movements are continuous, while
activities are discrete and with different durations

« Boundaries between different activities are unknown
« Real-time detection

» Typically, continuous sensor data is first divided
into multiple discrete segments and then to be
classified into specific activity class

* How long should the segment be?
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Unknown activity length

 Human physical activities can be classified into non-
transitional (static/dynamic) and transitional activities

» Misclassification could happen especially for transitional
activity signals because the length of transitional activity
signals varies depending on the time to complete the activity
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Unknown activity length - example

Stand-to-Sit
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Adaptive sliding window

* A novel adaptive sliding window segmentation for physica
activity recognition is developed
« adaptively change the window size to deal with activity
signals of varying lengths
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Knowledge-based ontology reasoning

* In ontology-based HAR, an activity is recognised if every\

action concept associated with the activity is inferred

@ Activity Context A

@ @ """ @ Action Context
Object Interaction and
@ @ @ @ Location Contexts

Activity ontology is organized into four layers of concepts INFERENCE




Missing sensor data
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Dempster-Shafer based ontology reasoning

A reasoning algorithm is proposed that integrates \

ontological reasoning (represented in Description Logic)
with Dempster-Shafer (DS) theory to handle missing
sensor data by giving inferred activity a confidence level

DS theory assigns
masses (weights) to
any combination of
propositions

Belief(Actionai) Belief(Action2)

No”

Belief(Activity)

ambiguity or
ignorance




Sensor data anomaly detection

* Machine learning or data processing outcomes are \

heavily dependent on sensor data quality
« Sensor data suffers from many uncertainties

Sensor failure/drift
Power failure

* Challenges:

Calibration - Manual calibration is time and cost
consuming

Resources - Limited resources such as data, bandwidth
and computational power

Sensor-specific - Sensor-dependent heuristics and
features related to domain



Sensor data anomaly detection
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Unsupervised Feature Selection for

120311 I , * anomaly
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Thank you

Questions?



