Bringing the Frontier of Geological Modelling to Earthquake Ground Motion Simulation of the Basin Effect

Andrew La Croix

Sedimentary Environments & Analogues Research Group University of Waikato Robin Lee, University of Canterbury Andrew Stolte, University of Auckland Seokho Jeong, Changwon National University Adrian Pittari, University of Waikato

Presentation Outline

1) The Basin Effect

2) Seismic Hazard in New Zealand

- 3) Research Questions & Goals
- 4) Frontiers of Geological Modelling
- 5) Hamilton Basin
- 6) Dataset & Workflow
- 7) Early Progress

The Basin Effect

Modified from Bormann, 2002

The Basin Effect

Nepal 2015

Kaikoura 2016

Canterbury 2010/2011

Seismic Hazard in New Zealand

2022 NZSHM is most recent and complex hazard model

Probabilistic forecast of earthquake ground motion

Implicitly models basin effects using $V_{s30} - Z_1$ or $Z_{2.5}$

Suggests NW North Island has relatively low seismic hazard

GNS – 2022 New Zealand Seismic Hazard Model

Waikato Region Seismic Hazard

2018 M_w 6.2 Taumarunui earthquake displayed large amplification

Newly discovered faults in the region

Large population centre, including critical infrastructure

Waikato Region Seismic Hazard

Focus has been on Hauraki region not Hamilton Basin

Type 1 or 2 models

Need for more sophisticated basin analysis

Dempsey et al., 2020

Waikato Region Seismic Hazard

Focus has been on Hauraki region not Hamilton Basin

Type 1 or 2 models

Need for more sophisticated basin analysis

Stolte et al., 2019

Research Questions

How does geological heterogeneity affect ground motion?

Can earthquake modelling and hazard assessment be improved?

Is there potential to scale-up the work?

Forward Geological Modelling

Proximal

Forward stratigraphic and seismic methods

4D simulation of sedimentation, erosion, and bypass

Mixture of diffusion and hydraulic modelling

At present, only used to de-risk energy exploration

Forward Geological Modelling

Proximal

Quantify geological control parameters and basin evolution

Explain heterogeneity in stratigraphical/geological context

Predict internal geometry and property distribution

Forward Geological Modelling

Generation of seismic reflection response based on a geological model

Incorporates impedance and wavelet information

Will verify and expand insights of geological modelling

Hamilton Basin

Dataset

Variety of data types, vintages, and distribution

Challenges of data harmonization and integration

Workflow

Workflow – Geological Concept

Stratigraphic framework

Palaeogeography

Environments of deposition

Sedimentary processes

Workflow - HVSR

Spectral ratio method to help constrain basin depth and shape

Workflow – Forward Modelling

Stochastic to allow scenario testing

Workflow – Surface Wave Testing

 V_s profiles compatible with the observed surface wave dispersion Compare with and tune forward modelling process

Workflow - Simulation

• Graves and Pitarka (GP) hybrid approach

Low-frequency (e.g. f < 1.0 Hz) comprehensive physics-based wave propagation method

High-frequency (e.g. *f* > 1.0 Hz) simplified physics-based method

Merged to produce broadband ground motion

Workflow - Simulation

Low-frequency Ingredients

High-frequency Ingredients

Early Progress

PhD Student Confirmation

Seismic Data Reprocessing

Data Exploration & Synthesis

Dave

Gardiner

Developing Geological Concept

Tēnā Koutou Thank You