

DISCRETE ELEMENT MODELLING OF HIGHLY CRUSHABLE PUMICE SAND

Sam Bahmani

Supervisors:

Prof Rolando Orense

Prof Michael Pender

Outline

- Introduction
- Literature review
- Problem statement
- Objectives
- Particle crushing criteria
- Results
- Conclusions

Introduction

BP(

problematic from engineering perspective:

- Vesicular nature (Internal and surface voids)
- Unique surface texture

- •Crushable
- Compressible
- •Lightweight

The information currently available on the geotechnical characteristics of pumice sands is limited.

Attributed to the time-consuming and expensive nature of laboratory testing, implemented to characterise its behaviour.

Problem statement

 \geq Lack of information on pumice sands for required DEM parameters;

- ➢A DEM model, with consideration of the crushing response based on the experimental results and irregular shape of the particles under various conditions for pumice sand.
- Developing an efficient model to account for implementing the particle crushing mechanism and impact of crushing on the other particles in the sand matrix;
- Effects of boundary condition, drainage condition, shape of particles, void ratio, and different loading impact such as cyclic loading.

 \geq Influence of the shape and crushability on the behaviour of pumice sands;

 \geq Calibrated DEM results with the results of laboratory experiments;

 \geq Accurately predict the response of pumice sand particles;

Better understanding of the behaviour of pumice sands subjected to loading conditions;

 \geq Micromechanical behaviour of pumice sands at the microscale and macroscale

level.

Results

3D scanning

Specific gravity, G_s	1.7 - 2.3
Maximum void ratio, e_{max}	2.0 - 2.5
Minimum void ratio, e_{\min}	1.1 - 1.7
Particle size, mm	0.5 - 2.5

Table 1. Scan parameters employe	ed for the μ X-CT scanner and
cross-sectional reconstruction.	

μX-CT parameters		Reconstruction paran	neters
Pixel size (µm)	2.5	Artifact correction	12
X-ray voltage (kV)	60	Beam hardening correction (%)	64
X-ray current (µA)	166	Smoothing	1
Rotation step (°)	0.30	Static rotation	0.0
Filter	All	Cone-beam angle vertical	12
Frame averaging	Off	Cone-beam angle horizontal	8

3D scanning analysis

Closed porosity (perce	ent) Volume o	of open pore space	Open por	osity (per	<mark>cent)</mark> Total	vo	lume of pore space	Total porc	sity (percent)
Po(cl) Po.V(op)		Po(op)		Po.V(tot)		P	o(tot)		
%		U^3		%			U^3		%
0.07783516	1	46.99998607			1269887828		47.0	4123871	
		1.268774	8774 47%			1.269888			
							mm3		
Name	Darticle size	Open porosity (%)		Name	Particle siz	70	Closed porosity (%)	1	
	2 5	A7		DD_1	2.5		0.07		
	2.5	47		DD-2	2.5		0.07		
DD 2	2.5	44		DD_2	2.5		0.03		
	2.2	43			2.2		0.04		
DD-5	1 5	21		DD-5	1.5		0.00		
PP-6	2.4	10		PP-6	2.4		0.05		
PP-0	1	22			2.4		0.00		
DD_8	2	40			2		0.02		
	17	36			17		0.03		
PP-10	1.7	32		PP-10	1.7		0.03		
	Total Average	40.3	40	11 10	Total Avera	age	0.041	0.04	

Results (cont

PARTICLE STRENGT SIZE RELATION

 $ln\left[ln\left(\frac{1}{P_s}\right)\right] = m \cdot ln\left(\frac{\sigma}{\sigma_0}\right)$

Results (cont

Nominal size	Weibull modulus	37% tensile strength
(mm)	m	$(\sigma_{C0,d}$ -MPa)
1	1.95	14.88
2	1.8	7.39
4	0.47	5.64
8	0.78	4.06

-	Average size at failure	Average force at failure	Predicted force at failure
	(mm)	(N)	(N)
	1	10.4	9.13
	2	17.36	19.43
	4	48.68	55.53
_	8	72.22	77.85

Average force at failure as function of particle size (Nominal size)

 \geq As particle crushing criteria, a linear elastic formulation was used:

(a) Initial particle; (b) Particle splitting configuration

Breakage Approaches

 Different approaches have been used to describe breakage in DEM. They can be classified in two major groups.

Multigenerational approach (particle replacement)
Multigrain agglomerates (Fully resolved fragments).

Generation of particles

UNDRAINED TRIAXIAL

Results (cont.)

Physical parameter	Value		
Specimen dimensions (mm ³)	10×10×20		
Number of particles	5,000, 10,000, 20,000		
Friction coefficient, μ (radian)	0.7		
Young's modulus, E_0 (MPa)	30.1		
Poisson's ratio, v	0.25		
Density (kg/m ³)	2000		
Rolling stiffness coefficient, β	0.125		
Rolling strength coefficient, η	0.1		
Friction coefficient of the wall	0		
Young's modulus of the wall (GPa)	80		
Poisson's ratio of the wall	0.35		
Velocity (mm/s)	0.1		

UNDRAINED TRIAXIAL

Results (cont.)

BPO BRIAN PERRY CIVIL

Results (cont.)

Twist strength (T_{wist}); and

Twist stiffness (K_{tw})

Results (cont.)

Conclusions

The correlation statistically showed that the crushing strength of smaller pumice particles is higher than bigger particles.

The study also showed that the particle crushing did not stop, and particle crushing continued until the end of the tests.

This study confirmed that the hardening behaviour of pumice specimens, not only due to the crushing, but also due to the unique surface of pumice particles.

It was found that the limiting mechanical coordination number of corresponded to the start of the instability of the specimen.

One of the parameters that played a key role during the simulations is the interaction between the particles, which was controlled by twisting parameters together with the rolling resistance parameters.

The mechanical coordination Z was used to explain the instability of specimen, i.e. Z<4. The crushing phenomenon due to decreasing porosity of the specimens offered a higher resistant soil structure.

The total number of crushed particles in dense pumice sand was roughly twice that of loose specimens. Moreover, this study proved that particle crushing occurred during the extension or unloading phase.

"Thank You"

