Challenges in Determining Reference Input Ground Motions for Site Response Analyses and Application to Wellington Basin

Chris de la Torre

DT1 Kick-off meeting 29 July 2021

Options for Reference Input Motions

- Nearby rock outcrop
 - Lacks 3D effects (basin effects, surface waves)
- Nearby soil sites
 - Different 3D effects?
 - Uncertainty in deconvolution through soil (nonlinearity??)
 - Good for liquefaction mechanism, not GM prediction
- Downhole/vertical array
 - Challenges with downgoing wave effect
- Simulated ground motions
 - Uncertainty in simulations

Wellington: Complexity in Basin Structure

Wellington: Complexity in Surficial Soils

Complexities \rightarrow Spatial Variability in Ground Motion

Complexities \rightarrow Spatial Variability in Ground Motion

NZS1170.5 Site Amplification

Are Site/Basin Effects Repeatable?

1D Analysis with Rock Outcrop Input

1D Analysis with Rock Outcrop Input

1D Analysis with Nearby Soil Reference Site

- Site response at CPLB (CentrePort)
- Deconvolve all other nearby sites for use as input

VUWS – Best

2D Slice through Wellington Basin

- Can we capture basin amplification in 2D analysis?
- Would expect spatial variability in input
 - Use 3D simulations with domain reduction method?

Combining 3D Simulations and 1D Site Response

3D Simulation

Wave Propagation Site Response

