

Nationwide investigation of systematic site effects in New Zealand: Residual analysis of physics-based ground motion simulations

Ayushi Tiwari

Brendon Bradley Chris de la Torre Robin Lee

> DT1 Meeting 28 March 2024

Ground motion modelling

SeisTech Hikurangi megathrust M8.6 Simulation 12.80s Concentration 12.80s Concentratio

Empirical ground-motion models (GMMs)

Predictive capability over time

Validation

Validation study	Number of events	Magnitude range	Region
Lee et al. (2022)	479	$3.5 \le M \le 5.0$	New Zealand
Lee et al. (2020)	148	$3.5 \le M \le 5.0$	Canterbury (NZ)
de la Torre et al. (2020)	11	$4.7 \le M \le 7.1$	Christchurch (NZ)
Taborda et al. (2016)	30	3.5 < M < 5.5	Southern California
Maufroy et al. (2016)	19	$2.7 \le M \le 4.6$	Mygdonian basin (Greece)
Goulet et al. (2015)	12	$4.6 \le M \le 7.22$	US & Japan
Dreger et al. (2015)	7	$5.89 \le M \le 7.22$	US & Japan
Graves and Pitarka (2010)	4	$6.49 \le M \le 7.16$	California

Hybrid broadband ground motion simulations

Validation methodology: Residual analysis

$$\Delta_{es} = a + \delta B_e + \delta S2S_s + \delta W_{es}^0$$

$$Model \quad Source \ term \quad Site \ term \quad Remaining \ residual$$

$$Mixed-effects \ regression$$

Observed and simulated ground motion dataset

Research questions

- Which geographic *regions* and *sites* have predictions from simulations that significantly deviate from observations and why ?
- How can the systematic site effects be examined, which represents different 'missing' wave propagation phenomena governing site response?
 - Can an *optimum categorization* of sites be obtained which represents different types of site effects?
 - How much *uncertainty* in the site-to-site residuals is reduced using this categorization?
 - How can the *attributes* that *influence* these site residuals be identified ?
- Which *improvements* identified can be seamlessly integrated into the simulation workflow ?

V_{S30} model sensitivity - Overall results

- V_{S30} is a significant contributor to model prediction bias and uncertainty
- Large portion of model uncertainty comes from different variety of site effects

Categorization of sites based on Geomorphology

Examination 1: Geomorphological categorization

Examination 1: Wellington region

Examination 1: Geomorphological categorization

Hill/stiff rock sites contribute the most uncertainty to the current state of site response modelling

70 hill sites

- Poor V_{S30} estimates at hill sites of NZ
- Large variability among V_{S30} estimates

70 hill sites

Well constrained T_0 estimates at hill sites of NZ

70 hill sites

Poor $Z_{1.0}$ estimates at hill sites of NZ

Large variability among the relative elevation parameters

Large variability among most site characterization parameters of hill sites

Objective: Understand different types of hill sites in order to reduce variability among them for ground motion prediction

- Adjusted residual of a site = Original residual – Mean of the assigned cluster
- Minimum possible standard deviation = Std(Adjusted residuals)

• V_{S30} , $Z_{1.0}$, $\delta Z_{1.0}$, Slope – a poor differentiator between clusters

• T_0 – Clusters 1 and 2 have more weathered hill sites

- Cluster 1 and Cluster 5 have negative values of relative elevation parameters Lying near or on the toe of a hill
- Difference seen easier at higher scale i.e., H₁₂₅₀

- Cluster 1 and Cluster 2 difference Possible topographic deamplification at longer periods not captured in simulations
- Cluster 2 have ~60 % Port Hills sites where BPV volcanics subregion is modelled (above travel-time tomography-based velocity model)

- Cluster 1 and Cluster 5 have roughness higher than other clusters difference seen easier at higher scales
- Roughness is correlated with high site terms (or site amplification from literature)
- Cluster 1 sites are generally 'rougher' at higher scales, Cluster 5 sites are generally 'rougher' at lower scales

- Cluster 1 and 5 both lie on or near the toe of hill
- Cluster 1 sites are more weathered Thin impedance contrast uncaptured by V_{S30} based prediction
- Cluster 5 can be further subdivided the "less overpredicted" sites are rougher than "more overpredicted" sites
- Cluster 5 sites have low site response in general

- Clusters 1, 2, and 5 have high/low site responses and only partially predicted well by V_{S30} based prediction
- Clusters 3 and 4 are generally appropriately predicted

• Empirical site-to-site residuals are generally like site terms from physics-based simulations

Development of predictive model

Key points

- 1) Advancement of ground motion modelling is a **multidimensional iterative** problem
 - i. Large portion of model uncertainty comes from different variety of **site effects**
 - **ii. Optimum categorization of sites**, facilitating an understanding of various systematic site effects, is necessary.
- **2) Hill/stiff rock sites** contribute the most uncertainty to the current state of site response modelling in ground motion simulations.
 - i. Improved characterization of such hill sites (e.g., measured V_{S30}) is imperative.
- **3) Physical approaches** (Geomorphic classification and sub-classification of sites, site characterization parameters, etc.) along with **data-based approaches** (such as clustering of site-to-site residuals) aids in understanding imprecisions in ground-motion modelling.

Nationwide investigation of systematic site effects in New Zealand: Residual analysis of physics-based ground motion simulations

Ayushi Tiwari

Brendon Bradley Chris de la Torre Robin Lee

> NSHM Call 28 March 2024