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The Changing Earth & Geohazard
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“Humans have always striven to predict and understand the world, and 

the ability to make better predictions has given competitive advantages 

in diverse contexts (such as weather, diseases or financial markets).”

-- Reichstein et al., 2019, Nature
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figure modified from Xie et al. (2020)

❑ The modification effects of the near-surface earth structures to seismic waves passing through them (also called 

“site response” or simply “amplification”).



Near-Surface Earth Structures 

Reichstein et al. (2019)



Why Are Site Effects Hard to Predict?

❑ Spatially variable

❑ Temporally variable

✓ Climate change (e.g., permafrost);

✓ Seasonal (e.g., freezing and thawing);

✓ Meterological (e.g., rainfall);

✓ Anthropologic (e..g, evacuation and landfill)

✓ Event-specific site effects (azimuth and complex incident wavefield);



❑ Site response is different during different earthquakes, i.e., the within-site variability in site response, 

which reflects its randomness. 

❑ We focus on the prediction of the average site response (over different events) at a given location.

❑ At a given site, its site response varies but to a limited extent.

Within-Site Variability

Single event
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How Well Can We Predict Site Response?



1D GRA & SRI

❑ It represents the state-of-the-practice;

❑ Site effects are too complex to be fully described by a set of differential equations;
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𝑆𝑅𝐼: 𝐴(𝑓) =
ρ𝑅V𝑆,𝑅

ρV𝑆
. 𝑒−𝜋 𝜅0 𝑓 , κ0= κ0,surface - κ0,rock (κ0.rock = 0.007 s)

Squre-Root-Impedence (SRI) or Quarter-Wave-Length (QWL) approach : 
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Categorical correction spectra via k-means clustering 
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It is first proposed by Kawase et al. (2018) to correct noise HVSR. Zhu et al. (2020) used it to earthquake HVSR. 

Site-specific

Categorical

Zhu C, Pilz M and Cotton F (2020). Evaluation of a novel application of earthquake HVSR in site-specific amplification estimation. Soil

Dyn. Earthq. Eng. 139, 106301. https://doi.org/10.1016/j.soildyn.2020.106301.

Corrected HVSR (c-HVSR)

https://doi.org/10.1016/j.soildyn.2020.106301
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Parametric Regression Models [Amp(x)]



Random-Forest Models (RF)

Single-station records
HVSR(f), Acc(t), FAS(f)

Multi-stations & multi. records
GIT, δS2S, SB(S)R

Label

Roughness, geology, geomorphology
DEM & geological map

VS30, fP,HV, Zx, noise
Field measurements 

1D profile, dispersion curve
Invasive or noninvasive

RF



SeismAmp

Single-station records
HVSR(f), Acc(t), FAS(f)

Multi-stations & multi. records
GIT, δS2S, SB(S)R

Label

Roughness, geology, geomorphology
DEM & geological map

VS30, fP,HV, Zx, noise
Field measurements 

1D profile, dispersion curve
Invasive or noninvasive

RF

SeismAmp

Zhu et al. (2022). Separating Broad-Band Site Response from Single-Station Seismograms (under review).



Dataset

❑ 1580 training sites

❑ 145 testing sites
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❑ ϕm
S2S : standard deviation of residual between observation and prediction of a model (m) at the testing sites;

❑ ϕ0
S2S : standard deviation in full site response with the use of any model;

❑ Standard deviation of 1D GRA remains hight at high frequencies (> 2-4 Hz);

High uncertainty

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10

ϕ
m

S
2

S
(l
n
F

A
S

)

f (Hz)

ϕ0
S2S High uncertaintyϕ0
S2S

Results: 1D GRA

1D GRA



18

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10

ϕ
m

S
2

S
(l
n
F

A
S

)

f (Hz)

Amp (Roug.)

Amp (Vs30)

Amp (fp)

ϕ0
S2S

❑ 1D GRA vs Amp(VS30)

❑ What if we use a few more site parameters in empirical models (RF)?

Results: Amp(x)

1D GRA
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Results: RF
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❑ Proxies: roughness, geology and geomorphology;

❑ Roughness is a continuous variable whereas the later two are categorical; 



20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10

ϕ
m

S
2

S
(l
n
F

A
S

)

f (Hz)

RF1 (Proxies)

RF4 (Proxies, fp, Vs30)

f (Hz) GRA

0.1-10.0 25%

RF4

26%

ϕ0
S2S

Results: RF

1D GRA

Relative reduction in 

standard deviation 

(average over 0.1-10 Hz): 



21

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10

ϕ
m

S
2

S
(l
n
F

A
S

)

f (Hz)

RF1 (Proxies)

RF4 (Proxies, fp, Vs30)

RF6 (Roug., fp, Vs30, Z2.5)

ϕ0
S2S

Results: RF

Relative reduction in 

standard deviation 

(average over 0.1-10 Hz): 



22

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10

ϕ
m

S
2

S
(l
n
F

A
S

)

f (Hz)

RF6 (Roug., fp, Vs30, Z2.5)

❑ SeismAmp is a single-station end-to-end approach (seismograms → amplificaiton).

❑ Rethink the use of the best use of single-station recordings if our end goal is to predict amplification.  

❑ The individual components of ground motions carry salient information on site response, part of which is lost in HVSR.

Results: SeismAmp
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SeismAmp Predictions at Testing Sites
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SeismAmp Predictions at Testing Sites
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Results: All
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Single-station records
HVSR(f), Acc(t), FAS(f)

Multi-stations & multi. records
GIT, δS2S, SB(S)R

Label
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On-site 

earthquake 

recordings

Roughness, geology, geomorphology
DEM & geological map

VS30, fP,HV, Zx, noise
Field measurements 

Geological,  

geotechnical & 

geophysical data

1D profile, dispersion curve
Invasive or noninvasive

RF
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Site Information Pyrimid

❑ In site-specific applications, we often have 1D velocity profiles;

❑ What is the the best way to use Vs profile whenever available?

SeismAmp
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Machine Learning (ML)

Deep 

Learning 

1D GRA

Roten and Olsen (2021)

Optimal Way to Use Vs Porfile?

Input (given)

Feature 

engineering
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❑ 1D GRA has a high level of (parametric and modelling) uncertainty (success rate < 50%);

❑ AI is more efficient in utilizing given information than 1D GRA;

❑ Site response can be accurately seperated from single-station seismograms in a data-

driven manner. We need to re-think the way we use EQ recordinngs whenever available;

❑We need, at least, single-station earthquake recordings to accurately characerize site-

specific amplification in a broad frequency range. If we have something short of earthquake

reocordings, we shall live with a higher level of uncertainty in our prediction, then

uncertainty quantification is the key;

Lessons Learnt from Data in Japan
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Japan: A Natural Laboratory

❑ A large quantiy and high quality data (~2000 SM 

stations with inter-station distance < 20 km)

Aoi et al. (2020)
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Japan: A Natural Laboratory

❑ Easy to use (NIED website and three papers)

Network

Ground motion database

Site database
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NZ: A Natural Laboratory

❑ NZ NSHM project

Ground motion database Site database
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Effectiveness of 1D GRA at KiK-net sites, Japan.

GRA Reference
Observ

ation

No. of 

sites

Good 

match

Success 

rate

TTFbase Zhu et al. (2021) GIT 145 r > 0.6 41%

Borehole

Outcrop

1D GRA in NZ

TTFrnd Zhu et al. (2020) SBSR 90 r > 0.6 27%

TTFbase Zhu et al. (2020) SBSR 90 r > 0.6 16%

TTF
Kaklamanos & 

Bradley (2018)
SBSR 114 r > 0.6 18%

TTF
Thompson et al. 

(2012)
SBSR 100 r > 0.6 18%
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1D GRA in NZ

❑ KiK-net sites tend to be stiffer and rougher than K-NET sites;

❑ 1D GRA performs less well at stiffer and rougher sites;

❑ KiK-net site conditions are less favorable for 1D GRA than K-NET;

❑ More studies are needed using sites other than KiK-net sites.
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Relative predictor importance of RF6 (roug., fp, VS30, Z2.5)

Empirical Modelling in NZ

fP,HV

VS30

Roug,

Z2,5

❑ What is/are the best predictor(s) for NZ?
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Site Response in JP

Nakano et al. (2105, BSSA)
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Site Response in NZ

Lee et al. (2022, ES)



37
AI in NZ

After data selection: 

❑ No. of total, crustal, slab and interface events: 2826, 1403, 938, 485

❑ No. of sites: 521



Single-station records
HVSR(f), Acc(t), FAS(f)

Multi-stations & multi. records
GIT, δS2S, SB(S)R
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Roughness, geology, geomorphology
DEM & geological map

VS30, fP,HV, Zx, noise, CPT/SPT
Field measurements 

1D profile, dispersion curve
Invasive or noninvasive

AI in NZ

Local

Data

Global data NZ data

NZ-specific 

models

Transfer Learning



Cell-based single-path analysis (2D attenuation):

𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍 = 𝑭𝑨𝑺𝒐𝒃𝒔 − 𝑭𝑨𝑺𝑮𝑰𝑻

Dawood and 

Rodriguez-Marek (2013, 

BSSA)

Tectonic class 

Region-independent

From Single-Site to Single-Path in NZ?
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Site-specific amplification characterization is an engineering question, 

and its prediction accuracy depends on how much we would like to 

invest (cheap topo proxy - highly uncertain, single-station records –

highly accurate). The question might be how to achieve the required 

level of accuracy with lower costs. 

Final Remark

Uncertain

A
c
c
u

ra
c

y

Accurate

Low

C
o

s
t

High



41

Thank you !


