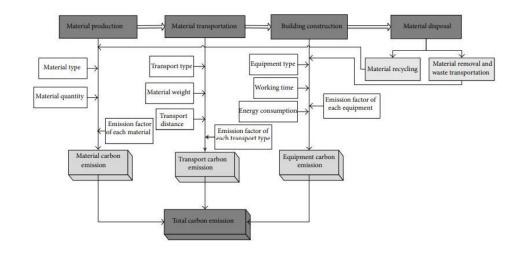

Life cycle analysis (LCA) of building carbon emissions and construction waste quantification

Master students: Rebecca Sabu, Ayu Feby, Grace Li Prospective PhD student: Hedy Lee Supervisor: Alice Chang-Richards

Decarbonisation in construction

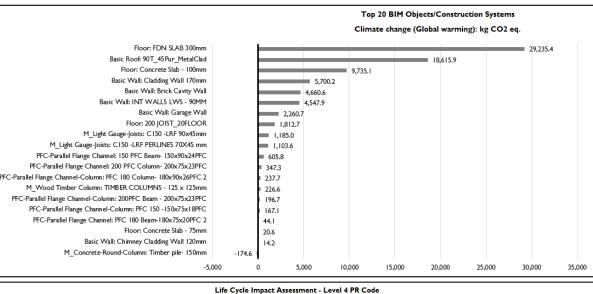
Understanding carbon



New Zealand's Zero Carbon Plan

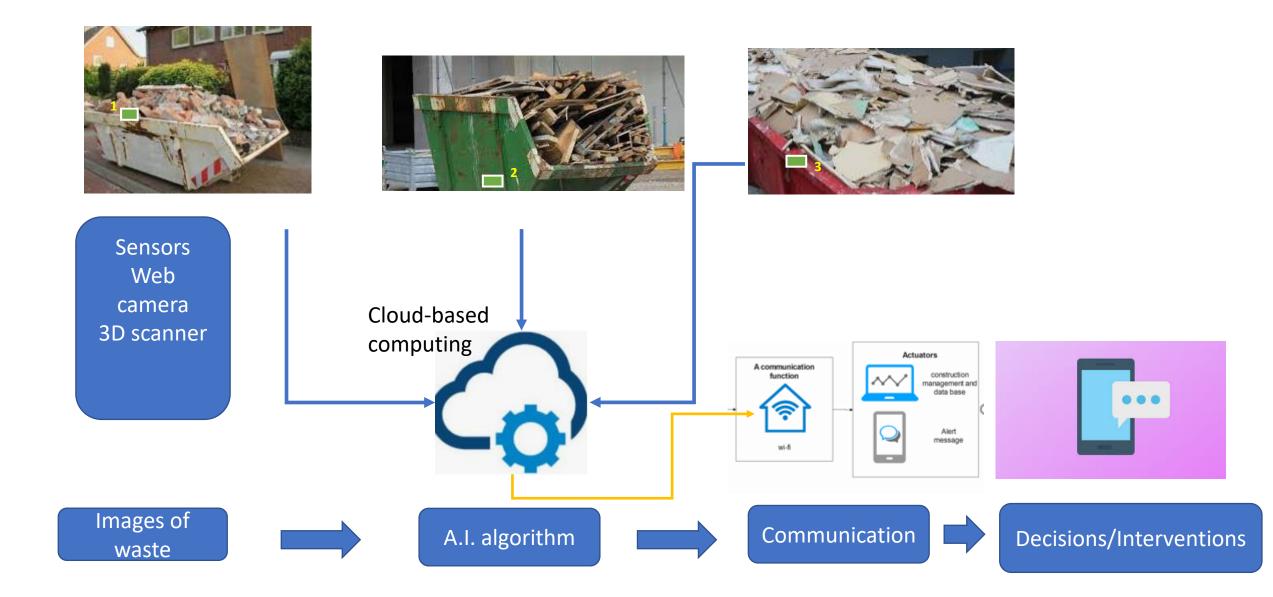
LCA analysis of building's environmental impact

Quantitative evaluations of a building's environmental impacts must be conducted using life cycle assessment (LCA), a method which quantifies the impacts of resources and emissions associated with construction and operation of buildings. However, it can be challenging to compare the results of building LCAs because of differences in scope and analysis methodologies.


System boundaries of the construction process Source: (Fu, Luo, Zhong, & Hill, 2014)

Life cycle analysis (LCA) of residential houses

BUILDING INFORMATION PANEL			LCAQuickV3.4.3				23-Feb-21		
Building Name	LGS Framed Building	Project No.		b .	I				
Design Phase	Detailed Design	· [!	Select Scope of Construction			New Build		▼	
HVAC Type	No - HVAC	·	Work			Click for Notes			
Select Nearest Building Location / City			Zone I Au		Auc	ckland 🗾 🔽			
Select Building Activity			R-DS	Residential: Detached, Double Sto			ble Store	•	
No. of Building	No. of Building Occupants		4						
No. of Annual	No. of Annual Occupied Hours per Person			4		BEES Def	ault 2520 hrs		rs
Enter Building Areas (m ²) & Number of			GFA	Т	A	# Storeys	New Build	, Zone I	, R-
Storeys	Storeys		133		97	2	DS, Strata I		
Calculated Stra	Calculated Strata Size			Strata I GFA <649					
Building Lifespa	Building Lifespan (Years)			90					
Main Lateral Load Structural System			Rigid frame system 🗨						
Main Structural System Material			Steel 🗸						
Year Building Operation Starts			2021						



Highest Global Warming contributing materials	- 150,000.00 100,000.	00-50,000.00 0.00 50,000.00 100,000.00 150,000.0	00 200,000.00 250,000.00 300,000.00 350,000.00						
5 2 3	Concrete, 25 MPa	38,991							
te /ai	Steel profiled sheet	• 21,295							
<u>۶</u> ۴	Zinc traditional sheets	• 9,823							
a a	Membrane, synthetic rubber (EPDM)	6,231							
ti ii	Brick, clay	 3697 							
0 5	Gypsum plasterboard	I.831							
방문	Insulation, polystyrene extruded (XPS)	• 1.791							
lighest Global Warmin contributing materials	Carbon steel beams, columns, channels and tees	• 1,555							
. Do 0	Timber structural framing, soft wood, dressed kiln-dried, exterior use	● 52							
I	Engineered wood, laminated veneer lumber (LVL)	-1.289							
	Timber structural framing, soft wood, dressed kiln-dried, interior use	• 							
Lowest Global Warming contributing materials	Engineered wood, laminated veneer lumber (LVL)	 -1,289 							
	Timber structural framing, soft wood, dressed kiln-dried, exterior use	● 52							
	Carbon steel beams, columns, channels and tees	 1,555 							
	Insulation, polystyrene extruded (XPS)	 1,791 							
	Gypsum plasterboard	I,831							
	Brick, clay	 B(697 							
R D	Membrane, synthetic rubber (EPDM)	6,231							
9 <u>5</u>	Zinc traditional sheets	9,823							
ibu d	-20,000.00 -10,	000.00 0.00 10,000.00 20,000.00	30,000.00 40,000.00 50,000.00						
Lowest	■A1-A3: Product Manufacturing kg CO2eq. ■A4-A3: Construction ■ 82, 84: Maintenance & Replacement ■ C1-C4: End of life								
	= D: Potential Environmental Benefits outside the lifecycle e.g. material recycling and reuse • Total of All Life Cycle Stages								

PHD topic: Real time quantification of carbon emissions of construction wastes

- Deploy <u>an IoT-based sensor network</u> to monitor and evaluate the environmental impact or carbon emissions for construction wastes on site.
 - A new methodology of quantification
 - A network of sensors and AI
 - A prototype for a national database of construction wastes and emissions
- "Detect, calculate and <u>alert for actions</u>"
- Maximise the use of waste management facilities
- Motivate construction workers to take interventions/actions for sustainability purpose
- Case studies: UoA Rec centre project and building 201 (Hawkins collaboration)

Methodology

