IM Calculation Refactor

Please read the readme @ https://github.com/ucgmsim/IM_calculation/blob/master/README.md for instructions on how to run the code.

DONE

- IM calculations have been separated from the "old post-processing" repository, extracting the relevant functions and classes.
- IM values validated on Hypocentre and Kupe against "old post-processing" on the same data.
- Two types of workflows: text based (most likely observations) and binary based (simulations once the binary workflow is in place).
- If binary workflow does not happen soon, the text based option will be used in both cases.
- Outputs match the formats requested in File Formats Used On GM and should therefore be usable on the upcoming Non-ergodic codes.
 Tested on very simple multi-process on Kupe with good speed-up using 40 and 80 cores. For the sample, 2228 stations were used

Machine	Cores	Time		
Hypocentre	1	132m		
Hypocentre	8	8.7m 27m		
Kupe	40			
Kupe	80			

OUTPUT STRUCTURE

With command : python calculate_ims.py ../BB.bin b -o /home/yzh231/ -i Albury_666_999 -r Albury -t s -v 18p3 -n 112A -m PGV pSA -p 0.02 0.03 -e -c geom -np 2

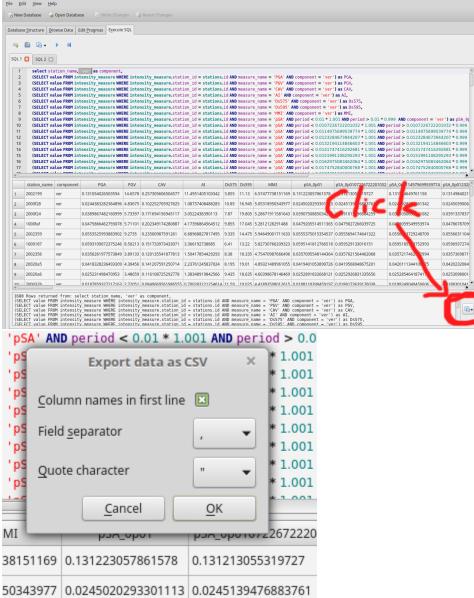
- input file path: ../BB.bin
- b: input file type is binary
- -o: output result csvs location is /home/yzh231, default is /home/\$user
- -i: unique identifier/runname of the simrun and output folder name are Albury_666_999, default is 'all_station_ims'. This attribute will be stored in the meta data file.
- -r: rupture name is Albury, default is unknown. This attribute will be stored in the meta data file.
- -t: type of simrun is simulated, default is unknown. This attribute will be stored in the meta data file.
- -v: version of simrun is v18p3, default is XXpY. This attribute will be stored in the meta data file.
- -n: station names used to perform im claculation are 112A, default is all the stations in the binary file
- -m: measures used to perform im calculation are PGV and pSA, default is all the measures
- -p: period of pSA used to perform im calculation are 0.02 0.03, default is Karim's 15 periods
- -e: In addition to the period specified by -p option, use extended 100 period of pSA, default not using
- -c: component of waveform acceleration used to perform im calculation is geom, default is '090, 000, ver'
- -np: number of processors used to perform im calculation is 2, default is 2

The result is outputted to the following location, where:

- 'Albury_666_999' is the folder that contains all outputs. The folder name 'Albury_666_999' is made of the string specified by the '-i' argument. Default is 'all_station_ims' if not specified.
- 'Albury_666_999.csv' is the summary csv file that contains all stations' im calculations. The summary file name is made of the string specified by the '-i' argument.
- 'Albury_666_999_imcalc.info' is the meta data file. The meta data file name is made of the string specified by the '-i' argument.
- 'station' is the folder that contains all individual station's im_calculations. The folder name is defaulted and cannnot be specified by the user.
- '112A_geom.csv' is the individual csv file that contains geom component im calculation for station 112A. Each name of the individual station csv file name is made of station_name + component

TEST FOR CALCUALTE_IMS.PY

All the steps below are to be carried out in hypocentre


1.Generate summary benchmark:

The following steps should only be performed once for each selected binary file

- 1. Select a source binary file: /nesi/transit/nesi00213/RunFolder/daniel.lagrava/Kelly_VMSI_Kelly-h0p4_EMODv3p0p4_180531/BB/Cant1D_v2-midQ_leer_hfnp2mm+_rvf0p8_sd50_k0p045/Kelly_HYP01-03_S1244/Acc/BB_with_siteamp.bin
- 2. Identify corresponding databse for the selected source binary file: /home/nesi00213/RunFolder/wdl16/database_old_pp/database.db
- 3. Find the script to extract benchmark im value files from the database in step 2: /nesi/projects/nesi00213/dev/impp_datasets/extract_ims.sql
- 4. Create a folder to store benchmark files. eg benchmark_im_sims
- 5. Execute extract_ims.sql in database.db 4 times with specified components. eg: 'ver'
 - DB Browser for SQLite /run/user/1000/gvfu/sftp-host-hypocentre_user-yzh231/home/nesi00213/BunFolder/wd1i6/database_old_pp/database

<u>File</u> <u>E</u> d	it <u>Yiew</u> Help
🔒 New I	Database 🔒 Open Database 🔄 Write Changes 🕞 Revert Changes
Database	e Structure Browse Data Edit Pragmas Execute SQL
501.1	SQL2 🗵
Joge 1	
1	select station name, were as component.
2	(SELECT value FROM intensity measure WHERE intensity measure station id = stations.id AND measure name = 'PGA' AND component = 'ver') as PGA,
3	(SELECT value FROM intensity measure WHERE intensity measure.station id = stations.id AND measure name = 'PGV' AND component = 'ver') as PGV,
4	(SELECT value FROM intensity measure WHERE intensity measure.station_id = stations.id AND measure_name = 'CAV' AND component = 'ver') as CAV,
5	(SELECT value FROM intensity_measure WHERE intensity_measure.station_id = stations.id AND measure_name = 'AI' AND component = 'ver') as AI,
6	(SELECT value FROM intensity_measure WHERE intensity_measure.station_id = stations.id AND measure_name = 'Ds575' AND component = 'ver') as Ds575,
7	(SELECT value FROM intensity_measure WHERE intensity_measure.station_id = stations.id AND measure_name = 'Ds595' AND component = 'ver') as Ds595,
8	(SELECT value FROM intensity_measure WHERE intensity_measure.station_id = stations.id AND measure_name = 'MMI' AND component = 'ver') as MMI,
9	(SELECT value FROM intensity_measure WHERE intensity_measure.station_id = stations.id AND measure_name = 'pSA' AND period < 0.01 * 1.001 AND period > 0.01 * 0.999 AND component = 'ver') as pSA_9(
10	(SELECT value FROM intensity_measure WHERE intensity_measure.station_id = stations.id AND measure_name = 'pSA' AND period < 0.0107226722201032 * 1.001 AND period > 0.0107226722201032 * 0.999
11	(SELECT value FROM intensity_measure WHERE intensity_measure.station_id = stations.id AND measure_name = 'pSA' AND period < 0.0114975699539774 * 1.001 AND period > 0.0114975699539774 * 0.999
12	(SELECT value FROM intensity_measure WHERE intensity_measure.station_id = stations.id AND measure_name = 'pSA' AND period < 0.0123284673944207 * 1.001 AND period > 0.0123284673944207 * 0.999
13	(SELECT value FROM intensity_measure WHERE intensity_measure.station_id = stations.id AND measure_name = 'pSA' AND period < 0.0132194114846603 * 1.001 AND period > 0.0132194114846603 * 0.999
14	(SELECT value FROM intensity_measure WHERE intensity_measure.station_id = stations.id AND measure_name = 'pSA' AND period < 0.0141747416292681 * 1.001 AND period > 0.0141747416292681 * 0.999
15	(SELECT value FROM intensity_measure WHERE intensity_measure.station_id = stations.id AND measure_name = 'pSA' AND period < 0.0151991108295293 * 1.001 AND period > 0.0151991108295293 * 0.999
16	(SELECT value FROM intensity_measure WHERE intensity_measure.station_id = stations.id AND measure_name = 'pSA' AND period < 0.0162975083462064 * 1.001 AND period > 0.0162975083462064 * 0.999
17	(SELECT value FROM intensity_measure WHERE intensity_measure.station_id = stations.id AND measure_name = 'pSA' AND period < 0.0174752840000768 * 1.001 AND period > 0.0174752840000768 * 0.999
18	(SELECT value FROM intensity_measure WHERE intensity_measure.station_id = stations.id AND measure_name = 'pSA' AND period < 0.0187381742286038 * 1.001 AND period > 0.0187381742286038 * 0.999

6. Export results to benchmark_im_sims/benchmark_im_sim_ver.csv. Clik OK and don't change anything when 'Export data as csv' window prompts

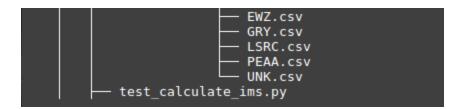
7. Repeat step 4 and 5 with different components: '090', '000', 'geom'

8. Now you have 4 summary benchmark files benchmark_im_sim_090/000/ver/geom.csv

2.Generate test input files

1. Follow the instruction in Binary Workflow FAQ, we can generate single waveform files. These waveforms are intended for the testing of ascii functionality of calculate_ims.py. Open a python cell

```
from qcore.timeseries import BBSeis
bb = BBSeis('/nesi/transit/nesi00213/RunFolder/daniel.lagrava/Kelly_VMSI_Kelly-h0p4_EMODv3p0p4_180531/BB
/CantlD_v2-midQ_leer_hfnp2mm+_rvf0p8_sd50_k0p045/Kelly_HYP01-03_S1244/Acc/BB_with_siteamp.bin')
bb.all2txt(self, prefix='/home/$user/benchmark_im_sim_waveforms/', f='acc'):
```


Now we have a 0002014.ver	0002307.000	0002540.090	000281t.ver	0002bce.000	10002b7.090	100086e.ver	
0002015.000	0002307.090	0002540.ver	0002820.000	0002bce.090	10002b7.ver	1000871.000	1
0002015.090	0002307.ver	0002541.000	0002820.090	0002bce.ver	10002ca.000	1000871.090	1
0002015.ver	0002308.000	0002541.090	0002820.ver	0002bcf.000	10002ca.090	1000871.ver	1
0002016.000	0002308.090	0002541.ver	0002821.000	0002bcf.090	10002ca.ver	1000882.000	1
0002016.090	0002308.ver	00025e0.000	0002821.090	0002bcf.ver	10002cc.000	1000882.090	1
0002016.ver	0002309.000	00025e0.090	0002821.ver	0002bd0.000	10002cc.090	1000882.ver	î
0002017.000	0002309.090	00025e0.ver	0002822.000	0002bd0.090	10002cc.ver	10008cc.000	1
0002017.090	0002309.ver	00025e1.000	0002822.090	0002bd0.ver	10002d9.000	10008cc.090	1
0002017.ver	000230a.000	00025e1.090	0002822.ver	0002bd1.000	10002d9.090	10008cc.ver	1
0002018.000	000230a.090	00025e1.ver	0002823.000	0002bd1.090	10002d9.ver	10008cf.000	1
0002018.090	000230a.ver	00025e2.000	0002823.090	0002bd1.ver	10002e3.000	10008cf.090	1
0002018.ver	00023ab.000	00025e2.090	0002823.ver	0002c82.000	10002e3.090	10008cf.ver	1
00020c1.000	00023ab.090	00025e2.ver	0002824.000	0002c82.090	10002e3.ver	10008d3.000	1
00020c1.090	00023ab.ver	00025e3.000	0002824.090	0002c82.ver	10002f2.000	10008d3.090	1
00020c1.ver	00023ac.000	00025e3.090	0002824.ver	0002c83.000	10002f2.090	10008d3.ver	1
00020c2.000	00023ac.090	00025e3.ver	0002825.000	0002c83.090	10002f2.ver	10008de.000	1
00020c2.090	00023ac.ver	00025e4.000	0002825.090	0002c83.ver	10002ff.000	10008de.090	1
00020c2.ver	00023ad.000	00025e4.090	0002825.ver	0002c84.000	10002ff.090	10008de.ver	1
00020c3.000	00023ad.090	00025e4.ver	0002826.000	0002c84.090	10002ff.ver	10008e4.000	1
00020c3.090	00023ad.ver	00025e5.000	0002826.090	0002c84.ver	1000302.000	10008e4.090	1
00020c3.ver	00023ae.000	00025e5.090	0002826.ver	0002c85.000	1000302.090	10008e4.ver	1
00020c4.000	00023ae.090	00025e5.ver	0002827.000	0002c85.090	1000302.ver	10008e8.000	1
00020c4.090	00023ae.ver	00025e6.000	0002827.090	0002c85.ver	100030e.000	10008e8.090	1
00020c4.ver	00023af.000	00025e6.090	0002827.ver	0002c86.000	100030e.090	10008e8.ver	1
00020c5.000	00023af.090	00025e6.ver	0002828.000	0002c86.090	100030e.ver	10008fb.000	1

3. Create Test Folder

- Create The test folder structure follows Testing Standards for ucgmsim Git repositories
 Select 10 stations you want to test and cp corresponding waveforms files to the singel_files directory as below
- 3. Copy the source binary file 'BB_with_siteamp.bin' to the input folder
- Run 'write_benchmark_csv(sample_bench_path)' function inside test_calculate_ims.py to generate 'new_im_sim_benchmark.csv', where 'sample_bench_path' is the folder we created in 1.4 Generate summary_benchmark: benchmark_im_sims. This function should only be run once for each binary file.

NOW you have all the input files ready

toot
└── test └── test_calculate_ims
— sample1
input
BB_with_siteamp.bin
new_im_sim_benchmark.csv
<pre>single_files</pre>
00020d3.000
- 00020d3.090
00020d3.ver 2002199.000
2002199.000
2002199.ver
CASH.000
CASH.090
CASH.ver
CFW.000
CFW.090
DLX.000
EWZ.000
EWZ.090
EWZ.ver
GRY.000
GRY.090
GRY.ver
LSRC.000
PEAA.000
PEAA.090
PEAA.ver
UNK.000
UNK.090
UNK.ver
output — output — ascii darfield im sim
ascii darfield im sim.csv
ascii darfield im sim.info
2002199.csv
CASH.csv
CFW.csv
EWZ.csv GRY.csv
- PEAA.csv
UNK.csv
<pre>binary_darfield_im_sim</pre>
binary_darfield_im_sim.csv
binary_darfield_im_sim.info
00020d3.csv
- 2002199.csv
CASH.csv
CFW.csv
DLX.csv

4. Run Pytest

Make sure you are currently under the test_calculate_ims folder, run:

<pre>\$ pytest -v -s test_calculate_ims.py</pre>
yzh231@hypocentre ~/IM_calculation/test/test_calculate_ims (git)-[test] % pytest -v -s test_calculate_ims.py
<pre>platform linux2 Python 2.7.14, pytest-3.2.2, py-1.4.34, pluggy-0.4.0 /usr/bin/python2.7 cachedir://.cache rootdir: /home/yzh231/IM_calculation, inifile: plugins: cov-2.3.1 collecting 0 items /home/yzh231/IM_calculation/calculate_ims.py collected 6 items</pre>
test_calculate_ims.py::test_binary_script_calculate_ims_python /home/yzh231/IM_calculation/calculate_ims.py /home/yzh231/IM_calcula alculate_ims/sample1/output -i binary_darfield_im_sim -t s -n 2002199 GRY 00020d3 UNK CASH CFW DLX LSRC EWZ PEAA -p 0.01 0.2 0.5 1. /home/yzh231/IM_calculation/test/test_calculate_ims/sample1/output/binary_darfield_im_sim/binary_darfield_im_si Calculations are outputted to /home/yzh231/IM_calculation/test/test_calculate_ims/sample1/output/binary_darfield_im_sim PASSED
test_calculate_ims.py::test_ascii_script_calculate_ims python /home/yzh231/IM_calculation/calculate_ims.py /home/yzh231/IM_calculat _ims/sample1/output -i ascii_darfield_im_sim -t s -n 2002199 GRY 00020d3 UNK CASH CFW DLX LSRC EWZ PEAA -p 0.01 0.2 0.5 1.0 3.0 4.0

CHECKPOINTING & SPLITTING A BIG SLURM

Responsible scripts

- 1. slurn header template: https://github.com/ucgmsim/slurm_gm_workflow/blob/master/templates/slurm_header.cfg
- 2. im_calc_slurm template: https://github.com/ucgmsim/slurm_gm_workflow/blob/master/templates/im_calc_sl.template
- 3. submit_hf.py that generates the slurm files: https://github.com/ucgmsim/slurm_gm_workflow/blob/master/scripts/submit_hf.py
- 4. checkpointing functions: https://github.com/ucgmsim/slurm_gm_workflow/blob/master/scripts/checkpoint.py

Checkpointing

Checkpointing is needed for IM_calculation due to large job size and limited running time on Kupe. Therefore, we implemented checkpointing to track the current progress of an im_calculation job, and carry on from where the job was interrupted by slurm.

Note, the checkpointing code relies on the input/output directory structure specified in the im_calc_al.template in the checkpoint branch. Failure to match the dir structure will result in runtime error. A quick fix would be modifying the template to suit your own dir structure.

Example:

(1) Simulation

Input/output structure defined in im_calc_al.template

```
echo ___calculating simulations____
{% for sim_dir, sim_name, fault_name in sim_dirs %}
time python2 $IMPATH/calculate_ims.py {{sim_dir}}/Acc/BB.bin b -o {{sim_dir}}/.././IM_calc/ -np 40 -i {{sim_name}} -r {{fault_name}} -t s -s
{% endfor %}
```

Actual input data structure:

melody.zhu@kupe01:/nesi/nobackup/nesi00213/RunFolder/Cybershake/v18p6_batched/v18p6_1k_under2p06_ab/Runs> ls Aratiatia ArielBank ArielEast Astrolabe01 Astrolabe02 Astrolabe03 Astrolabe05 Astrolabe07 Awakeri Barefell Bidwill Billys BlueLk BlueMtn BooBooEAST

The input binary file is under:

```
/nesi/nobackup/nesi00213/RunFolder/Cybershake/v18p6_batched/v18p6_1k_under2p0G_ab/Runs/BlueMtn/BB/Cant1D_v3-midQ_OneRay_hfnp2mm+_rvf0p8_sd50_k0p045/BlueMtn_HYP28-31_S1514/Acc/BB.bin
```

The output IM_calc folder is under:

metody.znu@kuped1:/nes1/nobackup/nes100213/kunFolder/Cyber BlueLk_HYP01-29_S1244_BlueLk_HYP03-29_S1264_BlueLk_HYP06

(2) Observed

Input/output structure defined in im_calc_al.template

1200_0070015*13.70100ECH711_0310 Bluelk_HYP11-29_51344 Bluelk_HYP15-29_51384 Bluelk_HYP19-29_51424 Bluelk_HYP22-29_51454 Bluelk_HYP26-29_51494 Bluelk_HYP29-29_51524 Bluelk_HYP13-29_51364_Bluelk_HYP18-29_51414_Bluelk_HYP20-29_51434_Bluelk_HYP23-29_51464_Bluelk_HYP27-20_51664

Actual input data structure:

melody_zhugkupe01:-> ls test obs/JMCalcExample/
2012p01308 2012p01308 2013p049577 2013p0495016 2013p053606 2013p708602 2013p817946 2013p686761 2014p237547 2014p933966 2014p965622 2016p119534 2016p158394 2016p355041 2122042 3631755

The output **IM_calc** folder is under:

melody.zhu@kupe01:~> ls test_obs/IMCalcExample/IM_calc/ 2012p713691_2012p764736_2012p801609_2013p049577_2013p368016_2013p653606_2013p708602_2013p817946_2013p868761_

Splitting a big slurm

Splitting a big slurm script into several smaller slurms is needed due to the maximum number of lines allowed in a slurm script on Kupe.

Inside submit_imcalc.py The -ml argument specifies the maximum number of lines of python call to calculate_ims.py/caculate_rrups.py. Header and foot er like '#SBATCH --time=15:30:00', 'date' etc are NOT included.

Say if the max number of lines allowed in a slurm script is 1000, and your (header + footer) is 30 lines, then the number n that you pass to -ml should be 0 < n <=967. eg. -ml 967.

Example:

We have 250 simulation dirs to run, by specifying -ml 100 (100 python calls to calculate_ims.py per slurm script), we expect 3 sim slurm scripts to be outputted.(1-100, 100-200, 200-250)

We have 3 observed dirs to run, by specifying -ml 100 (100 python calls to calculate_ims.py per slurm script), we expect 1 sim slurm scripts to be outputted.

We have 61 rrup files to run, by specifying -ml 100 (100 python calls to calcualte_rrups.py per slurm script), we expect 1 sim slurm scripts to be outputted.

Command to run checkpointing and splitting:

python submit_imcalc.py -obs ~/test_obs/IMCalcExample/ -sim runs/Runs -srf /nesi/nobackup/nesi00213/RunFolder /Cybershake/v18p6_batched/v18p6_exclude_lk_batch_6/Data/Sources -ll /scale_akl_nobackup/filesets/transit /nesi00213/StationInfo/non_uniform_whole_nz_with_real_stations-hh400_v18p6.ll -o ~/rrup_out -ml 1000 -e -s -i OtaraWest02_HYP01-21_S1244 Pahiatua_HYP01-26_S1244 -t 24:00:00

Output:

- rw-rr	1	melody.zhu	melody.zhu	48890	Jul 🛛	1	03:47	sim_im_calc_0.sl
- rw- r r	1	melody.zhu	melody.zhu	48674	Jul :	1	03:47	sim_im_calc_100.sl
- rw-rr	1	melody.zhu	melody.zhu	31922	Jul 🗆	1	03:47	sim im calc 200.sl
- rw- r r	1	melody.zhu	melody.zhu	1329	Jul 🛛	1	03:47	obs im calc 0.sl
- rw- r r	1	melody.zhu	melody.zhu	23246	Jul 🛛	1	03:47	rrup_im_calc_0.sl

To submit the slurm script:

\$cp test.sl /nesi/nobackup/nesi00213/tmp/auto_preproc
\$sbatch test.sl

The reason that we have to run 'test.sl' under '/nesi/nobackup/nesi00213/tmp/auto_preproc' is otherwise slurm cannot find machine.env specified by the test.sl script:

source machine env.sh

TODO

- Creation of semi-automatic slurm generation that will have all the calls to produce the results as needed.
- Progress printing statements
 Rrup calculation on a smaller station list currently when generating the slurm script it does the full grid even for stations outside the domain

Notes

• Extensive re-writing of code needs to have smaller deliverables in the future, as this simplifies the integration.