
BB Binary workflow

SUMMARY

Old HF workflow
losing 10% core hours for formatting text
losing 250% storage space for storing txt

New BB workflow
checks LF/HF compatibility, previous case of different `nt` no longer undetected
kupe 80 processes = 55 seconds, hypocentre 28 processes = 15 seconds (siteamp not fully vectorised)
quickly finished, not fully tested yet
No longer losing 600% storage space for storing both Vel and Acc as text

How to run

HF

mpirun -n 80 python2 hf_sim.py source.stoch stations.ll HF.bin \ # HF.bin is the output file
-m /home/nesi00213/VelocityModel/Mod-1D/Cant1D_v1-midQ.1d \ # override vm
--dt 0.02
-i # individually run stations

BB

mpirun -n 80 python2 bb_sim.py LF/bevan2012_v3_s103252/OutBin /path/to/vm/ HF.bin BB.bin # BB.bin is the output
file

BB gets hf_vs_ref from HF file (stored as part of HF), lf_vs_ref from vs3d.file.s

Python interface

HF (and BB)

from qcore.timeseries import HFSeis
load file
hf = HFSeis('HF.bin')
retrieve timeseries (x,y,z)
hf.acc('CACS')
only x
hf.acc('CACS', comp = <0, or hf.X or hf.COMP['090']>)
store station as txt
hf.acc2txt('CACS')
store all stations as txt, same as if ran standard txt version
hf.all2txt(prefix = 'Acc/hf_')

LF

just like for vel
lf.vel('CACS')
you can access transparently converted accelerations
lf.acc('CACS')

	BB Binary workflow

