Prototype of non-uniform grid

This is a very short introduction to what I have implemented.

Ideas

- No longer use quad-trees (ie. bisect squares into 4). Instead, we have the following approach:
- Convert data to grid points
- Generate the coarsest mesh first (8 Km)
- Around each point, generate a square domain, half of the distance to the next point
- Estimate the quality of that square domain. If accepted, add new 6 points. This number is needed to ensure the continuity of the grid as expected
- Proceed the same way for every point on the coarsest mesh. This will create a new mesh that we will call mesh level 1.
- Apply the same idea to every point of mesh level 1, resulting into mesh level 2.
- Stop refining once the distance between points is the smallest acceptable (500 m or other)
- Convert grid points back to longitude/latitude
- Estimation based around population and vs_500
- total_score_domain = w_v*score_vs500 + w_p*score_population. w_v +w_p = 1.0
- Initially w_v=w_p=0.5
- score_vs500 = 1 if vs_500 < $0.5 \mathrm{Km} / \mathrm{s}, 0$ if vs_500 $>2 \mathrm{Km} / \mathrm{s}$ and linearly between 0 and 1 for other values

- score_population $=1$ if population in domain $>\mathrm{k}^{*} \mathrm{~min}$ _population_acceptable, 0 if population $<\mathrm{min}$ _population_acceptable. Linearly

(in the image $\mathrm{k}=10$ just for the example)
valued between 0 and 1 otherwise.
- For vs 500 we use the minimal value of vs_ 500 found in the tentative domain
- Arbitrarily: if total_score_domain >0.5 then refine the region. We can change this value, making it smaller will accept lots more of points
- Other idea: use mean instead of max for population.

Results

We consider a grid over an $850 \mathrm{~km} \times 300 \mathrm{~km}$ grid around the South Island. If we have a uniform grid. A mesh with 500 m spacing for this domain would contain $1701 \times 601=1022301$ points. In the following we will compare to that quantity.

Make the coefficients $w _v$ and $w _p$ vary and discuss the resulting non-uniform grids.

- Any other values will result in grids in between those extremes. For example, if $w _v=w _p=0.5$, we get the green points on top of the population

Remarks

- The colored map of the vs 500 values looks like:

