# Verification of Specfem3D against Emod3d

# Problem Statement

To date, ground motion simulations of the Canterbury earthquakes have been carried out using the Graves and Pitarka (2010) hybrid broadband ground motion simulation methodology which combined deterministic finite di must be employed to integrate seismic waveform data to improve the Canterbury Velocity Model (CantVM). Specfem3D is a spectral element-based method which has tomographic waveform inversion capabilities which can

In order to verify that our installation and usage of the Specfem3D software is correct, results from Specfem3D are compared against results from the deterministic low frequency simulations from Graves and Pitarka (2010) Project Members

# Robin Lee, Brendon Bradley, and Seokho Jeong (QuakeCoRE)

Description (Objectives / Outcomes)

- Produce equivalent inputs for the Specfem3D and Emod3D simulation methodologies
   Run Specfem3D and Emod3D simulations for the test scenarios.
- 3. Verify that Specfem3D and Emod3D produce matching output within numerical expectations.

# Tasks

Produce the following inputs for Specfem3D and Emod3D:

- Source description.
- Velocity model
- Station list.

Run the Specfem3D and Emod3D simulations while varying the following parameters:

- · Velocity model:
  - a. Homogeneous halfspace (1.00)b. 1D velocity model (1.02)

  - c. Tomography only (1.11) d. Tomography + 1D basin (1.21) e. Tomography + 3D basin (1.65)
- Attenuation:
- - Without attenuation b. With attenuation
- Sources:

#### a. 19th October 2010

Compare the output from Specfem3D and Emod3D by examining:

- Waveforms directly.
- Fourier spectra.
- Intensity measures (PGV?)
- Goodness of fit?

#### Schedule

This project is currently ongoing, the provided schedule is a rough outline of what has been completed to date and what is expected in the foreseeable future:

June - Installation of Specfem3D on local machine and HPC (Fitzroy).

July - Learning to use Specfem3D and running the test case examples

August - Producing inputs for Specfem3D, running real cases for Specfem3D.

September - Learning to run Emod3D, producing inputs consistent with Specfem3D, improving post-processing.

October - Comparison of Specfem3D and Emod3D outputs through waveform comparisons, Fourier spectra, Intensity measures and goodness of fit.

November - Finalize comparisons and properly document results.

# Verification

As the Spectem3D and Emod3D methodologies have different formulations of the wave propagation problem, and hence take different inputs, the methods have some inherent differences which can lead to differences in the

The following two sections documents the specific details of the Specfem3D and Emod3D simulations carried out and the controls taken to ensure as much consistency between how the two methods are utilized. The presc

## Specfem3D Simulation Details

- Specfem is run on a cartesian coordinate grid where the locations of features have been converted from geographic coordinates (longitude and latitude) using the II2xy function. Specfem is run on a mesh with 400m spacing between nodes and with velocities prescribed at 200m spacing. Ideally specfem would be run on a mesh with 200m grid spacing but currently limitations and issues are
- The earthquake source is defined as a point source centroid moment tensor solution. Station locations are co-located with the station file used for Emod3D (as the stations must exist on a grid point in Emod3D)
- Simulation time step of 0.005s.
- Stacey absorbing boundary conditions.

# Emod3D Simulation Details

- Emod3D is run on a cartesian coordinate grid where the locations of features have been converted from geographic coordinates using the II2xy function Emod3D is run on a grid with 200m spacing where the velocities are prescribed.
- The source is defined as a point source by its focal mechanism (strike, dip and rake).
  Station locations are located on the nearest grid point to the actual station location.
  Simulation time step of 0.005s.

Some kind of absorbing boundary condition where the boundaries are set with a very high attenuation.

# Simulation Doma

The domain of interest for the verification is a rectangular subregion of the Canterbury region spanning longitudes [172.25° 172.75°] and latitudes [-43.8° -43.4°] as shown in Figure 1.7 sites of varying azimuth from the sou different physical phenomena observed from the simulations.

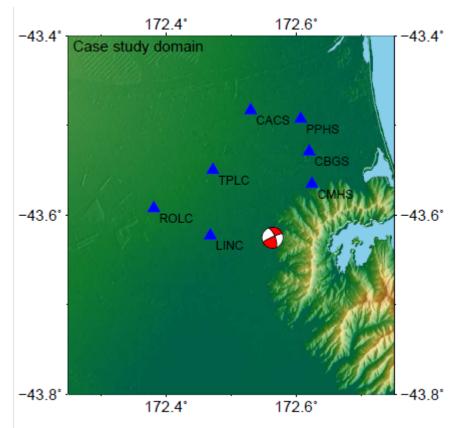
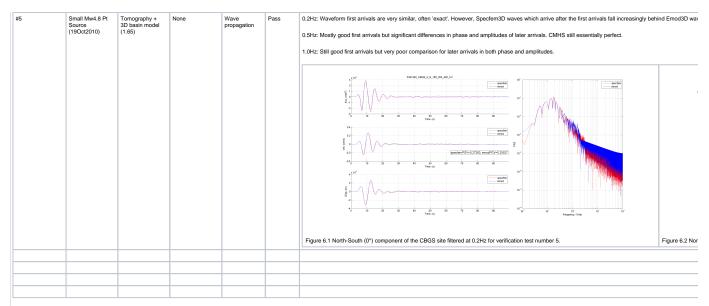



Figure 1. Verification domain for the 19th October 2010 earthquake including the source and station locations.

Both Specfem3D and Emod3D will be run as equivalently as possible for several scenarios (as shown in Table 1 of the Results section) provided the inherent differences in the numerical methods (and current limitations an

The output from Specfem3D and Emod3D are filtered at various frequencies to determine their similarities and differences within different frequency bands, highlighting in particular the difference between frequencies which resolved should be roughly 0.5Hz (considering 5 nodes per wavelength). Hence the frequency band of 0.05-0.2Hz highlights the well resolved components of the output, the frequency band of 0.05-0.5Hz highlights what is a determining the verdict of the verification, followed by the frequency band of 0.05-0.5Hz, and lastly the frequency band of 0.05-1Hz is provided to solely show the effect of including unresolved frequencies.


# Result

The scenarios with their respective parameters are listed in Table 1 along with the results of and comments on the verification. While it is not plausible to include all results here, the CBGS site is used as an example here to

Table 1. Results of the Specfem3D and Emod3D comparisons for the various scenarios tested.

| Verification<br>Test<br>Number | Source<br>Description                   | Crustal<br>Model<br>Description | Attenuation | Purpose             | Pass<br>/Fail | Notes/Figures                                                                                                                                                                                                                                                                                                                              |
|--------------------------------|-----------------------------------------|---------------------------------|-------------|---------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #1                             | Small Mw4.8 Pt<br>Source<br>(19Oct2010) | Homogeneous<br>halfspace (1.00) | None        | Wave<br>propagation | Pass          | 0.2Hz: Waveforms 'exact' for all waveforms for the first 20 seconds. After 20 seconds, some waveforms remain practically exact while others begin to show devi<br>0.5Hz: Similar results to the 0.2Hz.<br>1.0Hz: Significant differences between Spectem3D and Emod3D outputs, visible in both waveforms, PGV values, and Fourier spectra. |
|                                |                                         |                                 |             |                     |               | Figure 2.1 North-South (0°) component of the CBGS site filtered at 0.2Hz for verification test number 1.                                                                                                                                                                                                                                   |

| #2 | Small Mw4.8 Pt           | 1D velocity model               | None | Wave                | Pass  | 0.2Hz: Waveform first arrivals are very similar, often 'exact'. However, Specfern3D waves which arrive after the first arrivals fall increasingly b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | whind Emod2D way  |
|----|--------------------------|---------------------------------|------|---------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2 | Source<br>(19Oct2010)    | (1.02)                          | None | propagation         | F doo | 0.2Hz. Waveronn mist anivals are very similar, onen exact. However, Speciencico waves which arrive aren ure mist anivals rail incleasingly o<br>0.5Hz. Similar results to the 0.2Hz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ening Eniod3D way |
|    |                          |                                 |      |                     |       | USH2. Similar results to the 0.5Hz but slightly worse fitting.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |
|    |                          |                                 |      |                     |       | 1.0Hz: Similar results to the 0.5Hz but slightly worse fitting.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|    |                          |                                 |      |                     |       | 2111 39140_4262_0_1_10_26_00_01 90<br>2 9 9000 900 900 900 900 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
|    |                          |                                 |      |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|    |                          |                                 |      |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|    |                          |                                 |      |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|    |                          |                                 |      |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|    |                          |                                 |      |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|    |                          |                                 |      |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|    |                          |                                 |      |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|    |                          |                                 |      |                     |       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
|    |                          |                                 |      |                     |       | Figure 3.1 North-South (0°) component of the CBGS site filtered at 0.2Hz for verification test number 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Figure 3.2 Nor    |
| #3 | Small Mw4.8 Pt<br>Source | Tomography only<br>model (1.11) | None | Wave<br>propagation | Pass  | 0.2Hz: Results mostly exact between the two methods. PGV values are extremely similar.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
|    | (19Oct2010)              | model (1.11)                    |      | propagation         |       | 0.5Hz: Similar results to the 0.2Hz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
|    |                          |                                 |      |                     |       | 1.0Hz: Similar results to the 0.5Hz but slightly worse fitting.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|    |                          |                                 |      |                     |       | 12 <sup>110<sup>4</sup></sup> 20142,502,30,11,22,62,33 50 <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
|    |                          |                                 |      |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tee intelly       |
|    |                          |                                 |      |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|    |                          |                                 |      |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|    |                          |                                 |      |                     |       | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
|    |                          |                                 |      |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|    |                          |                                 |      |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|    |                          |                                 |      |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|    |                          |                                 |      |                     |       | 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1<br>5 - 10 - 20 - 20 - 20 - 20 - 20 - 20 - 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |
|    |                          |                                 |      |                     |       | Figure 4.1 North-South (0*) component of the CBGS site filtered at 0.2Hz for verification test number 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Figure 4.2 Nor    |
| #4 | Small Mw4.8 Pt<br>Source | Tomography +<br>1D basin model  | None | Wave<br>propagation | Pass  | 0.2Hz: Waveform first arrivals are very similar, often 'exact'. However, Specfem3D waves which arrive after the first arrivals fall increasingly b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ehind Emod3D wav  |
|    | (19Oct2010)              | (1.21)                          |      |                     |       | 0.5Hz: Similar results to the 0.2Hz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
|    |                          |                                 |      |                     |       | 1.0Hz: Still good first arrivals but very poor comparison for later arrivals in both phase and amplitudes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
|    |                          |                                 |      |                     |       | 3 <sup>117</sup> 30144,040,0,0,17,0,60,0,3 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
|    |                          |                                 |      |                     |       | the second secon |                   |
|    |                          |                                 |      |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|    |                          |                                 |      |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|    |                          |                                 |      |                     |       | 8 or 7 100000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
|    |                          |                                 |      |                     |       | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
|    |                          |                                 |      |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|    |                          |                                 |      |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|    |                          |                                 |      |                     |       | 8 10 20 20 48 20 60 71 80 60 11' 11' Negarago (1911)<br>Negarago (1911)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |
|    |                          |                                 |      |                     |       | Figure 5.1 North-South (0°) component of the CBGS site filtered at 0.2Hz for verification test number 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Figure 5.2 Nor    |
|    | 1                        | 1                               |      | 1                   | 1     | þ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |



### **Discussion and Conclusions**

The verification process has concluded that the outputs from Specfem3D and Emod3D are practically exact in some scenarios, and similar in others for the relevant frequencies. In particular, smooth velocity models (such a models) which have sharp interfaces produce increasing differences in the phase of later arrivals but match first arrivals and amplitudes in general well. The findings here are supported by work carried out by Chaljub (2015) between each method as well as the discrete representation of the velocity model input. Chaljub (2015) has presented some options to mitigate these problems. The primary solution to this problem is to create a mesh whic changes in velocities to occur within lements. However, the computational requirement to produce this kind of mesh, and also to run the simulations in 3D are beyond what is currently plausible. The second solution to this model which intrinsically smooths the velocity model. With this overarching objective in mind, it seems unreasonable to manually smooth the velocity model.

Numerical dispersion and instability is also a likely factor for the differences observed, as seen in the Fourier spectra where the low frequencies are reasonably consistent between the two methods, but significantly different Therefore results which are filtered at a lower cutoff frequency, such as 0.2Hz, are given more weight in determining the results of the verification.

Considering the overarching objective of ground motion simulations in Specfem3D, inherent differences in the two simulation methodologies, and current limitations, the verification of Specfem3D and Emod3D is considered