Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

16SUL - Seismic resilience of underground lifelines: Case study of the Christchurch City potable water network


Bellagamba - UC, Bradley - UC, Wotherspoon - UA, Hughes - UC

...

In summary, the combination and application of the aforementioned research elements delivers new, efficient and intelligent tools to help decision-makers improve the seismic resilience of their social units (community, network operator company, insurance company or other).  This should lead to a comprehensive mitigation and transfer of the seismic risks as well as a reduction of the earthquake impacts on their social units.

16RTN - Assessing the resilience of a rural transportation network  

...

Aghababaei - UA, Costello - UA, Ranjitkar - UA

The performance of infrastructure in natural disasters, especially lifelines such as the transportation network, is critical to the resilience of communities and the economy at large. In addition, transportation networks play a major role in the recovery operation, both in terms of access for the emergency services and the repair of other infrastructure. This project will focus on the assessment of the resilience of the transportation network on the West Coast of the South Island in New Zealand. A network model will be built in AIMSUN, a specialist transportation simulation software. The performance of the network will then be modelled and assessed under the impact of a range of natural hazards. It is also planned to attempt calibration of the model using data from the 2016 Kaikoura earthquake. The model can then be used to help inform the relevant transport agencies on priorities for resilience improvements on their networks.

16UTM - Assessing the resilience of an urban transportation network 

...

Afzal- UA, Ranjitkar - UA, Costello - UA

The performance of infrastructure in natural disasters, especially lifelines such as the transportation network, is critical to the resilience of communities and the economy at large. In addition, transportation networks play a major role in evacuation and in the recovery operation, both in terms of access for the emergency services and the repair of other infrastructure. This project will focus on the assessment of the resilience of Auckland’s transportation network. Auckland city, with a population of almost 1.5 million, is situated on a volcanic field and, being a coastal city, is susceptible to Tsunamis. A network model will be built in Aimsun, a specialist transportation simulation software. The performance of the network will then be modelled and assessed under the impact of a range of natural hazards. For example, the performance of the network under a mass evacuation in the event of a volcanic eruption will be assessed. The model could then be used to help inform the relevant transport agencies on priorities for resilience improvements on their networks.

16SMS - Technical resilience of stormwater management systems to flooding 

...

Valizideh - UA, Shamseldin - UA, Wotherspoon - UA

This study propose a novel methodology to evaluate the technical resilience of urban stormwater systems to flooding hazards. Three technical aspects in stormwater management; urban hydrological characteristics, hydraulic capacity of the system, and network structures properties are taken into account to evaluate resilience degree of the system. The outcome of this study will provide the framework to quantify the temporal nature of system robustness and functionality and evaluate the resilience degree of stormwater management systems in the conveyance of different extreme rainfall events and disaster scenarios.

17EPD - Electric power distribution system resilience modelling toolbox 

...

Liu - UA, Nair - UA

This study will develop a resilience estimation methodology and associated tools for electricity distribution infrastructure factoring various natural hazard spatial temporal data, component fragility models, network connectivity and realistic cascaded outages. These tools will help to develop interdependency models with other distributed infrastructure networks to better understand overall infrastructure resilience to extreme natural hazards as a result of actions taken (pre-disaster mitigation or planning for post-disaster rapid recovery)

Output: 
1. A natural hazard scenario based network outage simulation tool 
2. Electric power system resilience metrics for case studies quantifying consequences of hazards to  help assess network components, network interdependencies and future development of  'national report card' for resilience rating.

17123 - Tsunami loading characteristics on power poles

...

Whittaker - UA, Melville - UA

Electricity networks are vital for a functioning society, and their loss due to large-scale natural disasters such as tsunamis can have devastating consequences. This project will investigate the hydrodynamic loading characteristics of power poles, a vital component of the electricity network, under tsunami attack. A series of scaled physical experiments will quantify the relationship between the tsunami bore characteristics and the force exerted on different power pole structures with and without debris. Results from the physical experiments will be compared to available field data from the Chile 2010 tsunami. The hydrodynamic forces measured during tests of representative New Zealand power poles will be input into a structural model todetermine the relationship between the tsunami characteristics and the damage/failure states of the power poles. The resulting fragility curves will be imported into RiskScape, and will form the basis of the analysis of the electricity network resilience to tsunamis.

17143 - Characterising long-term ground deformation impacts on Christchurch City’s buried high voltage electricity network since the start of the Canterbury Earthquake Sequence 

...

Hughes, UC, van Ballegooy T&T, Wotherspoon - UA

Through the 2010-2011 Canterbury Earthquake Sequence (CES), liquefaction-induced permanent ground deformations caused severe damage to infrastructure lifelines such as roads, potable water, waste water and storm water systems. In contrast to the performance of these systems, Christchurch’s electricity network, managed by Orion, sustained comparatively less damage due to investment in seismic design and retrofit of its assets. However, much of Orion’s current network lies within urban landscapes that experienced significant horizontal and vertical ground movements through the CES, which raises questions on whether ground strains stretched the buried cabling and influenced long-term damage rates. We propose here a spatiotemporal correlation between cable repairs and measured CES horizontal movements and lateral strains. Pre-, syn- and post-CES Orion repair data will be spatially correlated with remotely sensed datasets of horizontal ground deformations derived from LiDAR surveys and satellite imagery, with vertical movements and angular distortions derived from LiDAR surveys, and with CPT-based liquefaction vulnerability parameters. The study will elucidate the seismic performance of Orion’s network in liquefiable through the CES, and inform electricity lifeline providers elsewhere on future of seismic impacts. In addition, the study will characterise any potential long-term system repair rates resulting from the extensive seismically-induced ground deformation.

17145 - Characterisation and screening of New Zealand stopbank networks 

...

Crawford-Flett - QC, Shamseldin - UA, Wotherspoon - UA

...

The database developed in this project will form the basis for future research in this area. Without a centralised stopbank information repository, any detailed analysis on the performance of the system, both in terms of flood hazard and the cascading effect of other natural hazard events, would not be possible. The project will provide an initial spatial analysis framework that can be extended to assess the impact of potential stopbank failure on other infrastructure.

17104 - Framework for integrated ‘end to end’ impact assessment of infrastructure networks under natural hazards 

...

Uma - GNS, Prasanna - Mas, McDonald - ME, Horspool - GNS

...