Validation of ground motion simulations with explicit incorporation of uncertainty, for small magnitude earthquakes in Canterbury, New Zealand

QuakeCoRE Flagship 1 meeting
Sarah Neill
23-07-2020

Context and Motivation

Spectrum of research

Consideration of uncertainty

For Validation:

- Consider uncertainties of data, parameters \& models
- Describe uncertainty distribution for parameters
- Assess parameter correlations
- Consider alternative models

Consideration of uncertainty

For Validation:

- Understand systematic effects of uncertainty
- Assess against observations

Lee et al 2020

Consideration of uncertainty

Purpose:

- Apply findings in validation to prediction of future earthquakes

Bradley (2019)

Data set

- Small magnitude (Mw 3.5-5)
- Large amount data
- Point source assumption
- Linear
- Less uncertainties

Data set

- Small magnitude

(Mw 3.5-5)

- Large amount data
- Point source assumption
- Linear
- Less uncertainties
- Canterbury Data
- Stepping stone to NZ wide
- Manageable data set
- Previous research (NZVM)

Previous work

Lee et al. (2018)

Validation of GM Sim w/o Modelling Uncertainty

- Median input parameters for validation
- Small and large magnitude events
- Comparisons w/ GMPEs
- Residual analysis

Razafindrakoto et al. (2017)

Pilot Study on Source Modelling Sensitivity

- February 22 \& September 4 events
- Perturbations to Mw, A, Ti, $\Delta \sigma$, K
- Mw and $\Delta \sigma$ dominant for between event residuals

Vibration Period, $\mathrm{T}(\mathrm{s})$

Simulation method

- Previously used for developing median simulations
- Graves and Pitarka hybrid method
- LF comprehensive physics,
- HF simplified physics
- NZVM

- HF empirical Vs30 based site amp.

Simulation method

- Previously used for developing median simulations
- Graves and Pitarka hybrid method
- LF comprehensive physics,
- HF simplified physics
- NZVM

Thomson (2019)

- HF empirical Vs30 based site amp.
- The focus is σ
- Uncertainty description
- Results Interpretation

Uncertainty Description

Uncertainty Description:

- 20 events (from 148)
- 39 sites
- 50 realisations
- 14 uncertainties

Uncertainty Description

Uncertainty Description

Parameter	Prior Distribution	Reference	
Source - Low Frequency: Shear wave velocity (Vs)	Truncated log-normal	$\sigma=0.05, \mathrm{z}=4$	(Graves et al. 2010)
Path - Low Frequency: Anelastic attenuation (Qs) Path - High Frequency:	Truncated log-normal	$\sigma=0.3, z=2.5$	(Taborda2014)
Anelastic attenuation (qs)	Truncated log-normal	$\sigma=0.3, z=2.5$	(Ou 1990)
$\frac{\text { Site - High Frequency: }}{}$			
Vs30	Truncated log-normal	$\sigma=$ varies, $z=2$	(Foster el al.)

Results Interpretation Method

- No 1:1 comparison between obs and sim
- Call for a new method!
- New method being tested
- Assess systematic effects
- Computes and compares variance components
- To derive simulation σ

Results Interpretation Method

Variance of observations relative to mean simulation

$$
\Delta_{o b s}=\ln I M_{o b s}-\mu_{l n I M_{s i m}}
$$

Results Interpretation Method

Variance of observations relative to mean simulation

$$
\begin{gathered}
\Delta_{o b s}=\ln I M_{o b s}-\mu_{l n I M_{s i m}} \\
\Delta_{o b s}=a+\delta_{e}+\delta_{s}+\delta_{\varepsilon}
\end{gathered}
$$

Results Interpretation Method

Variance of observations relative to mean simulation

$$
\begin{gathered}
\Delta_{o b s}=\ln I M_{o b s}-\mu_{l n I M_{s i m}} \\
\Delta_{o b s}=a+\delta_{e}+\delta_{s}+\delta_{\varepsilon} \\
\mathrm{\tau}^{2} \phi_{s 2 s^{2}} \sigma_{s s^{2}}
\end{gathered}
$$

Results Interpretation Method

Partitioning of simulation variance

$$
\Delta_{\text {sim }}=\ln I M_{\operatorname{sim}}-\mu_{I M_{s i m}}
$$

Results Interpretation Method

Partitioning of simulation variance

$$
\begin{gathered}
\Delta_{\operatorname{sim}}=\ln I M_{\text {sim }}-\mu_{I M_{\text {sim }}} \\
\operatorname{Var}\left[\Delta_{\text {sim }}\right]=\frac{\sum_{k}\left(\Delta_{\operatorname{sim}_{k}}-\mu \Delta_{\text {sim }}\right)^{2}}{n-1}
\end{gathered}
$$

Results Interpretation Method

Partitioning of simulation variance

$$
\begin{gathered}
\Delta_{\operatorname{sim}}=\ln I M_{\operatorname{sim}}-\mu_{I M_{s i m}} \\
\operatorname{Var}\left[\Delta_{\operatorname{sim}}\right]=\frac{\sum_{k}\left(\Delta_{\operatorname{sim}_{k}}-\mu \Delta_{\operatorname{sim}_{k}}\right)^{2}}{n-1} \\
\operatorname{Var}\left[\Delta_{\operatorname{sim}}\right]=V_{e}+V_{s}+V_{\varepsilon}
\end{gathered}
$$

Results Interpretation Method

Partitioning of simulation variance

$$
\begin{array}{r}
\Delta_{\operatorname{sim}}=\ln I M_{\operatorname{sim}}-\mu_{I M_{\operatorname{sim}}} \\
\operatorname{Var}\left[\Delta_{\operatorname{sim}}\right]=\frac{\sum_{k}\left(\Delta_{\operatorname{sim}_{k}}-\mu \Delta_{\operatorname{sim}_{k}}\right)^{2}}{n-1} \\
\operatorname{Var}\left[\Delta_{\operatorname{sim}}\right]=V_{e}+V_{s}+V_{\varepsilon}
\end{array}
$$

$\operatorname{Var}\left[\Delta_{\operatorname{sim}}\right]=V_{e}+V_{s}+V_{\varepsilon}=\left(a_{e}+\delta_{e}\right)+\left(a_{s}+\delta_{s}\right)+\left(a_{\varepsilon}+\delta_{\varepsilon}\right)$

Results Interpretation Method

Comparison of obs \& sim variance partitioning

$\underline{O b s}$		$\underline{S i m}$
τ^{2}	with	V_{e}
$\phi_{S 2 S}^{2}$	with	V_{S}
$\sigma_{S S}^{2}$	with	V_{ϵ}

Results and discussion

Event 3591999, Station ASHS

Event 3366586, Station ASHS

Event 3391440, Station ASHS

- Observation

Perturbed Simulation

- Averaged Perturbations
----- 1sd Perturbations

Results and discussion

Results and discussion

- σ of decomposition of observation residuals
- Compare with sim equivalent $\left(V_{x}\right)$
- Acceptability criteria

Results and discussion

Future work

More uncertainties needed

- Path duration
- kappa site dependency

Comparison with GMPEs

NZ wide small Mw validation
NZ wide moderate Mw (5-7) validation

- With additional uncertainties for finite fault

Te Hiranga Rū QuakeCoRE

Aotearoa New Zealand Centre for Earthquake Resilience

Thank you

Uncertainty Description

Results - Qs

Results - Qs

Results

Results

Results

Results

Results

Test 5

Results

- Show some progressive improvements from including Vs30 and Qs (if there is time). le different regression results
- Provide some more detail on how mixed effects regression is undertaken (similar style as my 13.07.20 memo to Stafford).

Method

Parameter	Prior Distribution		Reference
Source - Low Frequency: Magnitude Hypocentre latitude Hypocentre longitude Hypocentre depth Strike Dip Rake Shear wave velocity (Vs) Source - High Frequency: Rupture Velocity Brunes stress parameter Kappa*	Truncated normal Truncated log-normal Uniform Truncated log-normal Truncated log-normal	$\begin{aligned} & \sigma=0.075, z=2 \\ & \sigma=1 \mathrm{~km}, \mathrm{z}=2 \\ & \sigma=1 \mathrm{~km}, \mathrm{z}=2 \\ & \sigma=2 \mathrm{~km}, \mathrm{z}=2 \\ & \sigma=10^{\circ}, z=2 \\ & \sigma=10^{\circ}, z=2 \\ & \sigma=15^{\circ}, z=4 \\ & \sigma=0.05, z=4 \\ & \\ & \mu=0.8, \text { range }= \pm 0.075 \\ & \mu=50, \sigma=0.3, z=2 \\ & \mu=0.045, \sigma=0.3, z=2 \end{aligned}$	(Graves 2018) (Mai et al. 2005) (Mai et al. 2005) (Mai et al. 2005) (Ristau 2008) (Ristau 2008) (Graves et al. 2010) (Graves 2018) (Anderson et al. 1984)
Path - Low Frequency: Anelastic attenuation (Qs) Path - High Frequency: Anelastic attenuation (qs)	Truncated log-normal Truncated log-normal	$\sigma=0.3, z=2.5$ $\sigma=0.3, z=2.5$	(Taborda2014) (Ou 1990)
$\frac{\text { Site - High Frequency: }}{\text { Vs30 }}$	Truncated log-normal	$\sigma=$ varies, $\mathrm{z}=2$	(Foster el al.)

