

Source Considerations for Moderate Magnitude Earthquake Ground Motion Simulation Validation

Robin Lee¹, Brendon Bradley¹, Robert Graves²

¹University of Canterbury and QuakeCoRE, ²USGS Pasadena

Motivation

- Ground motion simulation validation allows us to use observations to quantify the predictive capability and infer where improvements can be made.
- Previously focussed on large M_w and small M_w .
- Large M_w studies on Darfield, Christchurch and Kaikōura earthquakes (Razafindrakoto et al. (2018) and Bradley et al. (2017)).
- Small M_w (3.5-5.0) studies for Canterbury and NZ-wide (Lee et al. (2020) and not yet published).
- Moderate (5.0-7.0) M_w currently missing.
- Moving from small to moderate, there are several additional considerations required.

NZ Validation Progression

	2015 – 2016	2017 – 2018	2018 – 2019	2020 — ?	
Events	M _w 7.1 Darfield M _w 6.2 Christchurch M _w 7.8 Kaikōura	148 Small M _w	498 Small M _w	62 Moderate M _w	
Region	Source-specific	Canterbury	New Zealand	"New Zealand"	
Velocity Model	NZVM v1.66 (Canterbury Basin only)	NZVM v1.66 (Canterbury Basin only)	NZVM v2.02 (8 sedimentary basins)	NZVM v2.03 (9 sedimentary basins)	
Sim Method	Standard Graves and Pitarka (2010,2015)	and Pitarka (2010,2015) (2010,2015) (2010,2015)		Modified Graves and Pitarka (2010,2015,2016) ³	

Simulation Methodology

- Widely-used Graves and Pitarka (GP) hybrid approach with modifications.
- Low frequency (LF) component (f<0.5Hz) from comprehensive physics-based wave propagation (for 200m finite difference grid spacing).
- High frequency (HF) component (f>0.5Hz) from simplified physics-based wave propagation.
- Period-dependent empirical V_{s30}-based site amplification (HF only).
- LF and HF merged to produce broadband (BB) ground motion.

Earthquake Events

Earthquake Events

- 62 earthquakes.
- 1738 high quality records across 203 stations from an initial set of over 4000.
- Quality of records determined from neural network trained against small M_w earthquakes.
- Enforced 3 HQ records per event and per station.
- Largest is M_w 6.6 which is 2013 Lake Grassmere EQ.

Earthquake Events

- Limited to events with centroid moment tensor solutions with centroid depth ≤ 20km.
- Larger M_w on average more records.

7

Recording Stations

- Broadband and strong motion stations across NZ.
- V_{s30} values from Foster et al. (2019) NZ-wide V_{s30} map.
- A variety of site conditions as shown by range of V_{s30} .
- Previous validation showed many sites appeared to have V_{s30} too low.
- Model currently being modified.

Velocity Modelling

Source Modelling

- Sources for small $\rm M_w$ can be reasonably approximated as point sources.
- Not reasonable for moderate Mw.
- Need to model as finite fault.
- Additional complexities.
 - Rupture geometry.
 - Slip, rise time and rake distribution.
 - Temporal evolution of slip.
 - Hypocentre location (currently set as centre of rupture plane).

Rupture Geometry

- Source description from geonet centroid moment tensor catalogue.
- To get a finite fault we use M_w-Area scaling relationship.
- Use Leonard (2010).

Table 4

Summary of the More Commonly Used Magnitude-Based Fault-Scaling Relations

Fault Type	Relation	b	а	S(a)	Range $A(\text{km}^2)$, $L(\text{km})$, $W(\text{km})$, $D(\text{m})^*$
Interplate DS	$M_{\rm w} = a + b \times \log(A)$	1.0	4.00	3.73-4.33	>0
-	$M_{\rm w} = a + b \times \log(L)$	2.0	4.00		
		1.667	4.24	3.81-4.73	> 5.4
	$M_{\rm w} = a + b \times \log(W)$	2.5	3.63	3.61-3.73	> 5.4
	$M_{\rm w} = a + b \times \log(D)$	2.0	6.84	6.17-7.38	>0
Interplate SS	$M_{\rm w} = a + b \times \log(A)$	1.0	3.99	3.73-4.25	>0
	$M_{\rm w} = a + b \times \log(L)$	1.667	4.17	3.77-4.55	3.4-45.0
		1.0	5.27		>45
	$M_{\rm w} = a + b \times \log(W)$	2.5	3.88	3.82-3.95	3.4-19.0
	$M_{\rm w} = a + b \times \log(D)$	2.0	6.85	6.34-7.38	> 0.13

12

Magnitude-Area Scaling Relationship

- Predicted A does not equal product of predicted L and W.
- I won't rule out an error or misunderstanding on my end but I checked this very rigorously. Has anyone else checked this before?

Magnitude-Area Scaling Relationship

- We consider two options:
- 1. L and W are equal so L = W = \sqrt{A}
- L and W are have a ratio r=L/W equal that predicted by Leonard (2010) equations while preserving the A predicted by Leonard.
 - Example:
 - For a M_w 5.0 strike slip earthquake:
 - Leonard gives us A = 10.2, L = 3.1, W = 2.8
 - $L \times W = 3.1 \times 2.8 = 8.8 \neq 10.2$
 - Instead use L = 3.4 and W = 3.0
 - L x W = 3.4 x 3.0 = 10.2

Rupture Generator

• Graves and Pitarka rupture generator.

Source Modelling

Example Simulation: 2013 Lake Grassmere

Waveforms

Intensity Measures vs R_{rup}

Analysis of Entire Dataset

- Mixed-effects regression framework to identify systematic biases.
- General form of a ground motion model for event *e* and station *s*:

Model Prediction Bias

21

Standard Deviations

Future Work

- Modified V_{s30} model built on the Foster et al. (2019) model.
- More investigation and analysis of 200m results.
- 100m grid run.
- Improvement of ground motion quality classification neural network.
- Subduction earthquakes.
- Uncertainty characterisation.