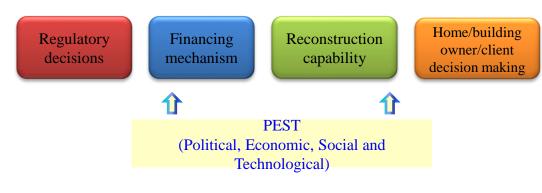
Quantification of Infrastructure **Downtime** in Earthquake Reconstruction

Sam Wilson (Masters Student, University of Auckland) Dr Alice Chang-Richards (PI, University of Auckland)

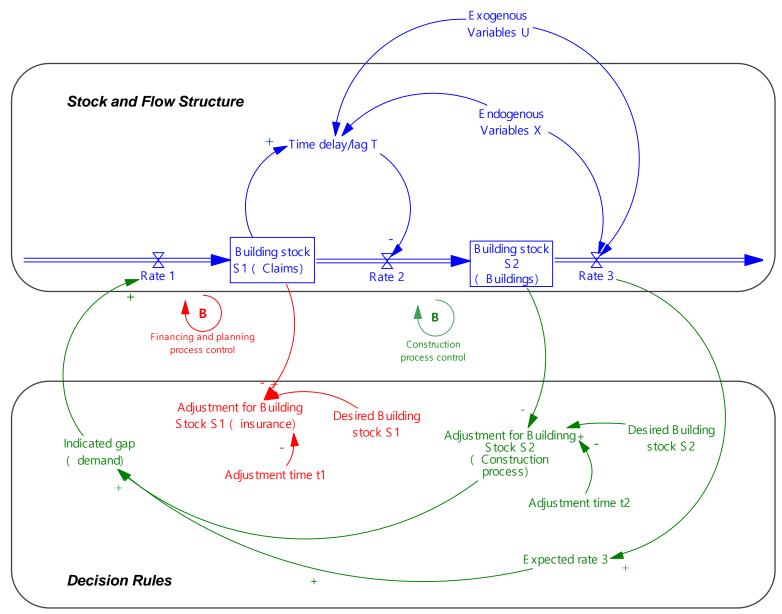
NZ Centre for Earthquake Resilience

SYSTEM DYNAMICS MODEL OF CRITICAL MECHANISMS


AFFECTING REBUILD TIME

Flagship 5 QuakeCoRE 2015-2016 Key Researchers:

Dr Álice Chang-Richards Dr Charlotte Brown Dr Nicky Smith Dr Erica Seville


The mechanisms that affect the time-path of postearthquake reconstruction fall into four categories

- Planning and regulatory environment
- Capability of engineering and construction sector
- Financing mechanism (e.g. insurance settlement)
- Decision making and actions of facility owners

Time delay	Critical contributing factor		
(Dependent variable)	(Independent variable)		
Inspecting and assessing time	Technical capability of engineering professionals		
	Speed of engineer mobilisation		
(Time needed for concluding damage results)	Availability of engineers		
	Fatigue of engineering assessors		
	Frequency of ongoing after shocks		
	Existence of a robust building inspection methodology		
Decision making time	Changes to the building code		
(Time needed for achieving recovery strategies)	Land zoning decisions		
(Time needed for achieving recovery strategies)	Consenting and permitting process		
	Insurance claim apportionment process/process of		
	securing finance		
	Mechanisms of recovery governance		
	Coordination with other sectors		
Financing time/Claim settlement time	Availability of loss adjusters/quantity surveyors		
(Time needed for securing financing or settling	Productivity of quantity surveying		
insurance claims)	Work hours of loss adjusters/quantity surveyors		
	Pace of decision making of policy holder		
Adjustment time	Capacity of construction businesses		
(Time needed for mobilisation of construction	Availability of construction manpower		
resources)	Economic conditions in the region		
	Economic conditions elsewhere		
	Availability of temporary accommodation		
	Needs perception delays (Flow of information on		
	reconstruction work pipeline)		
Completion time	Repair/rebuild procurement method		
(Time needed for undertaking construction work)	Repair scope variations		
(Time needed for undertaking construction work)	Extent of demand surge (labour wage inflation)		
	Productivity of construction labour		
	Long lead time components		
	Speed of design process		
Rework time (Time for discovery of repair defects and rework)	Treated as a constant		
	וובמוכע מז מ נטווזומוונ		

SYSTEM DYNAMICS MODEL

RESEARCH METHODOLOGY

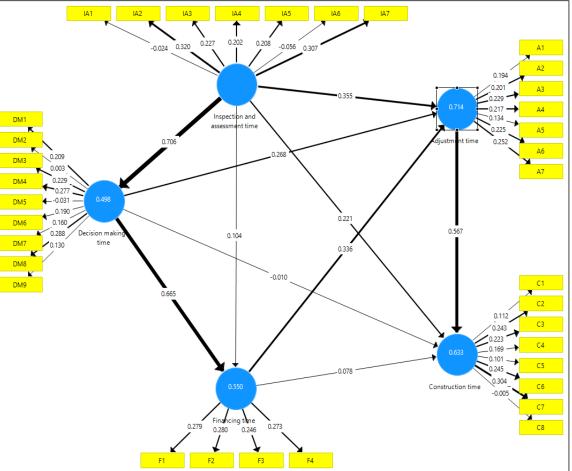
1. Systematic Review of Literature

Review of factors affecting the recovery efforts on infrastructure in disaster reconstruction

2. Semi-structured Interview

Interview with stakeholders associated with local earthquake recovery agencies Christchurch - SCIRT Kaikōura – NCTIR

3. Questionnaire Survey


Investigate the infrastructure recovery pathways in Christchurch by understanding the impact of critical factors on the recovery efforts

4. Structural Equation Modelling (SEM)

Observe of strength of relationships between recovery stages Quantify the impact of critical variables specific to the recovery phase

RESULTS

Inspection and Assessment	Decision Making	Financing	Adjustment	Construction
Technical capability of engineering professionals	Changes to building standards and practices	Availability of loss adjusters/quantity surveyors	Financial capacity of construction businesses to take on further work	Repair/rebuild procurement method (Form of contractual agreement)
Access to site due to safety concerns	Information management (database information)	Productivity of quantity surveying	Availability of construction manpower	Repair scope variations incurred through construction
Speed of engineer mobilisation and assessment	Incorporation of resilience and performance-based systems	Work hours of loss adjusters/quantity surveyors	The state of the economic system in Christchurch	Clarity in scope of the works
Availability of engineers	Land zoning decisions	Pace of decision making of policy holder	Economic conditions elsewhere	Extent of demand surge (labour wage inflation)
Fatigue of engineering assessors	Consenting and permitting process		Availability of temporary accommodation for staff	Competency and productivity of Contractors involved
Frequency of ongoing after shocks	Insurance claim apportionment process/process of securing finance		Availability of construction materials	Long lead time components and supply chain issues (logistics)
Existence of a robust inspection methodology	Mechanisms of recovery governance		Needs perception delays	Speed of design process
	Coordination with other sectors			Rework time such as repairing defects
	Community engagement in decision making			

Structural Equation Model of the infrastructure recovery process from Questionnaire Survey Responses

Critical factors in the infrastructure recovery process

THANK YOU - QUESTIONS

Active Researchers: Sam Wilson – <u>swil719@aucklanduni.ac.nz</u> Dr Alice Chang Richards – <u>yan.chang@auckland.ac.nz</u>