3-D forward modeling of elastic wave equation:

Stress-Displacement formulation, see e.g. Graves et al. (1996), equations (1-2) which include:

Equation of momentum conservation

$$
\begin{aligned}
\rho \ddot{u_{x}} & =\partial_{x} \tau_{x x}+\partial_{y} \tau_{x y}+\partial_{z} \tau_{x z}+f_{x} \\
\rho \ddot{u_{y}} & =\partial_{x} \tau_{x y}+\partial_{y} \tau_{y y}+\partial_{z} \tau_{y z}+f_{x} \\
\rho \ddot{u_{z}} & =\partial_{x} \tau_{x z}+\partial_{y} \tau_{y z}+\partial_{z} \tau_{z z}+f_{z}
\end{aligned}
$$

And Equation of stress-strain relations

$$
\begin{aligned}
\tau_{x x} & =(\lambda+2 \mu) \partial_{x} u_{x}+\lambda\left(\partial_{y} u_{y}+\partial_{z} u_{z}\right) \\
\tau_{y y} & =(\lambda+2 \mu) \partial_{y} u_{y}+\lambda\left(\partial_{x} u_{x}+\partial_{z} u_{z}\right) \\
\tau_{z z} & =(\lambda+2 \mu) \partial_{z} u_{z}+\lambda\left(\partial_{x} u_{x}+\partial_{y} u_{y}\right) \\
\tau_{x y} & =\lambda\left(\partial_{y} u_{x}+\partial_{x} u_{y}\right) \\
\tau_{x z} & =\lambda\left(\partial_{z} u_{x}+\partial_{x} u_{z}\right) \\
\tau_{y z} & =\lambda\left(\partial_{z} u_{y}+\partial_{y} u_{z}\right)
\end{aligned}
$$

where (u_{x}, u_{y}, u_{z}) are the displacement components; $\left(\tau_{x x}, \tau_{y y}, \tau_{z z}, \tau_{x y}, \tau_{x z}, \tau_{y z}\right)$ are the stress components; $\left(f_{x}, f_{y}, f_{z}\right)$ are the body-force components; ρ is the density; λ and μ are Lame coefficients. The symbols $\partial_{x}, \partial_{y}, \partial_{z}$ are the spatial differential operators and \ddot{u} is the second order temporal derivative.

Stress-Velocity formulation, see e.g. Graves et al. (1996), equations (3-4) which include:

$$
\begin{array}{r}
\dot{v_{x}}=b\left(\partial_{x} \tau_{x x}+\partial_{y} \tau_{x y}+\partial_{z} \tau_{x z}+f_{x}\right) \\
\dot{v_{y}}=b\left(\partial_{x} \tau_{x y}+\partial_{y} \tau_{y y}+\partial_{z} \tau_{y z}+f_{y}\right) \\
\dot{v_{z}}=b\left(\partial_{x} \tau_{x z}+\partial_{y} \tau_{y z}+\partial_{z} \tau_{z z}+f_{z}\right)
\end{array}
$$

and

$$
\begin{aligned}
\dot{\tau}_{x x} & =(\lambda+2 \mu) \partial_{x} v_{x}+\lambda\left(\partial_{y} v_{y}+\partial_{z} v_{z}\right) \\
\dot{\tau}_{y y} & =(\lambda+2 \mu) \partial_{y} v_{y}+\lambda\left(\partial_{x} v_{x}+\partial_{z} v_{z}\right) \\
\dot{\tau}_{z z} & =(\lambda+2 \mu) \partial_{z} v_{z}+\lambda\left(\partial_{x} v_{x}+\partial_{y} v_{y}\right) \\
\dot{\tau}_{x y} & =\lambda\left(\partial_{y} v_{x}+\partial_{x} v_{y}\right) \\
\dot{\tau}_{x z} & =\lambda\left(\partial_{z} v_{x}+\partial_{x} v_{z}\right) \\
\dot{\tau}_{y z} & =\lambda\left(\partial_{z} v_{y}+\partial_{y} v_{z}\right)
\end{aligned}
$$

where $b=1 / \rho$ is the buoyancy.
For convenience to storage the strains for inversion, the Stress-Displacement formulation also can be written in more general form as:

$$
\begin{aligned}
\rho \ddot{u}_{i} & =\partial_{j} \tau_{i j}+f_{i} \\
\tau_{i j} & =\lambda \theta \delta_{i j}+2 \mu \epsilon_{i j} \\
\epsilon_{i j} & =\frac{1}{2}\left(\partial_{j} u_{i}+\partial_{i} u_{j}\right)
\end{aligned}
$$

and the Stress-Velocity formulation can be written as:

$$
\begin{aligned}
\rho \dot{v}_{i} & =\partial_{j} \tau_{i j}+f_{i} \\
\dot{\tau}_{i j} & =\lambda \dot{\theta} \delta_{i j}+2 \mu \dot{\epsilon}_{i j} \\
\dot{\epsilon}_{i j} & =\frac{1}{2}\left(\partial_{j} v_{i}+\partial_{i} v_{j}\right)
\end{aligned}
$$

where i, j are spatial directions x, y and $z ; \epsilon_{i j}$ are strain components; $\theta=\frac{\epsilon_{i i}}{3}$ is the mean strain; $\delta_{i j}$ is the Kronecker function. We also want to introduce the deviator strains components as following:

$$
\epsilon_{i j}^{\prime}=\epsilon_{i j}-\theta
$$

Finite-Difference Implementation

The equations of the Stress-Velocity formulation is solved using a staggered-grid finite-difference technique, see e.g. Graves et al. (1996), equations (5-6) which
include:

Discrete form for the velocities

$$
\begin{aligned}
v x_{i+1 / 2, j, k}^{n+1 / 2} & =v x_{i+1 / 2, j, k}^{n-1 / 2}+\left.\left[\triangle t b\left(D_{x} T x x+D_{y} T x y+D_{z} T x z+f_{x}\right)\right]\right|_{i+1 / 2, j, k} ^{n} \\
v y_{i, j+1 / 2, k}^{n+1 / 2} & \left.=v y_{i, j+1 / 2, k}^{n-1 / 2}+\left[\triangle t b\left(D_{x} T x x+D_{y} T x y+D_{z} T x z+f_{x}\right)\right]\right]_{i, j+1 / 2, k}^{n} \\
v z_{i, j, k+1 / 2}^{n+1 / 2} & =v x_{i, j, k+1 / 2}^{n-1 / 2}+\left.\left[\triangle t b\left(D_{x} T x x+D_{y} T x y+D_{z} T x z+f_{x}\right)\right]\right|_{i, j, k+1 / 2} ^{n}
\end{aligned}
$$

Discrete form for the stresses

$$
\begin{aligned}
T x x_{i, j, k}^{n+1} & =T x x_{i, j, k}^{n}+\triangle t\left[\left.(\lambda+2 \mu)\left(D_{x} v x+\lambda\left(D_{x} v y+D_{z} v z\right)\right]\right|_{i, j, k} ^{n+1 / 2}\right. \\
T y y_{i, j, k}^{n+1} & =T x x_{i, j, k}^{n}+\triangle t\left[\left.(\lambda+2 \mu)\left(D_{x} v x+\lambda\left(D_{x} v y+D_{z} v z\right)\right]\right|_{i, j, k} ^{n+1 / 2}\right. \\
T x x_{i, j, k}^{n+1} & =T x x_{i, j, k}^{n}+\triangle t\left[(\lambda+2 \mu)\left(D_{x} v x+\lambda\left(D_{x} v y+D_{z} v z\right)\right]\right]_{i, j, k}^{n+1 / 2} \\
T x y_{i+1 / 2, j+1 / 2, k}^{n+1} & =T x y_{i+1 / 2, j+1 / 2, k}^{n}+\left.\triangle t\left[\mu\left(D_{x} v y+D_{y} v x\right)\right]\right|_{i+1 / 2,2, j+1 / 2, k} ^{n+1} \\
T x z_{i+1 / 2, j, k+1 / 2}^{n+1} & =T x z_{i+1 / 2, j, k+1 / 2}^{n}+\left.\triangle t\left[\mu\left(D_{x} v z+D_{z} v x\right)\right]\right|_{i+1 / 2, j, k+1 / 2} ^{n+1 / 2} \\
T y z_{i, j+1 / 2, k+1 / 2}^{n+1} & =T y z_{i, j+1 / 2, k+1 / 2}^{n}+\left.\triangle t\left[\mu\left(D_{y} v z+D_{z} v y\right)\right]\right|_{i, j+1 / 2, k+1 / 2} ^{n+1 / 2}
\end{aligned}
$$

where the subscripts refer to the spatial indices, and the superscripts refer to the time index; the symbols D_{x}, D_{y} and D_{z} represent the discrete forms of the spatial differential operators $\partial_{x}, \partial_{y}$, and ∂_{z}

Storage of the wavefields

For wavefield storage, we suggest 3 options:
-Store the velocity wavefield icluding 3 components: $v x, v y, v z$ (Time integration and spatial derivetives are required at later stages).
-Store the deformation fields icluding 9 components: $D_{x} v x, D_{y} v y, D_{z} v z, D_{x} v y, D_{y} v x$, $D_{x} v z, D_{z} v x, D_{y} v z$ and $D_{z} v y$ (Time integration is required at later stages).
-Store the deviator strain fields icluding 6 components: $\epsilon_{x x}, \epsilon_{y y}, \epsilon_{x y}, \epsilon_{x z}, \epsilon_{y z}$, and θ.

For time subsampling, we can store the data fields at every n-th time step ($\mathrm{n}=5$, 10, 20...)

For spatial domain downscale, (not mentioned yet!)

