GEOSPATIAL HAZARD AND CRITICALITY ASSESSMENT FOR INFRASTRUCTURE NETWORKS

PHD STUDENT:

MAIN SUPERVISOR: CO-SUPERVISOR: AMELIA LIN

LIAM WOTHERSPOON THEUNS HENNING

INTRODUCTION

Liquefaction susceptibility

Zhu et al. (2015) "A geospatial liquefaction model for rapid response and loss estimation" (updated 2017). Jessee et al. (2018) "A Global Empirical Model for Near-Real-Time Assessment of Seismically Induced Landslides".

AMELIA LIN

NETWORK MODELLING

Split polylines

Spatial join

ANALYSIS

AMELIA LIN

ANALYSIS

INFRASTRUCTURE NETWORK	LIQUEFACTION			LANDSLIDES		
	SUSCEPTIBILITY	GROUND SHAKING	PROBABILITY	SUSCEPTIBILITY	GROUND SHAKING	PROBABILITY
STATE HIGHWAYS	✓	\checkmark	\checkmark	\checkmark	×	×
RAIL	V	×	×	✓	×	×
POWER TRANSMISSION	✓	✓	×	√	×	×

AMELIA LIN

GEOSPATIAL HAZARD AND CRITICALITY ASSESSMENT FOR INFRASTRUCTURE NETWORKS

8

ANALYSIS

INFRASTRUCTURE NETWORK	LIQUEFACTION			LANDSLIDES		
	SUSCEPTIBILITY	GROUND SHAKING	PROBABILITY	SUSCEPTIBILITY	GROUND SHAKING	PROBABILITY
STATE HIGHWAYS	✓	✓	✓	\checkmark	×	×
RAIL	✓	×	×	\checkmark	×	×
POWER TRANSMISSION	✓	\checkmark	×	✓	×	×

ANALYSIS

Liquefaction probability

AMELIA LIN

ANALYSIS

		+ more data					
INFRASTRUCTURE NETWORK		LIQUEFACTION			LANDSLIDES		
	SUSCEPTIBILITY	GROUND SHAKING	PROBABILITY	SUSCEPTIBILITY	GROUND SHAKING	PROBABILITY	
STATE HIGHWAYS	√	✓	√	\checkmark	×	×	
RAIL	√	×	×	\checkmark	×	×	
POWER TRANSMISSION	✓	✓	×	V	×	×	

NETWORK CRITICALITY

What is network criticality?

Critical assets are sites, facilities or routes that "are especially significant to societal wellbeing and that therefore merit priority attention by utilities in emergency response and recovery". (NZ Lifelines Council)

How to determine network criticality?

NETWORK CRITICALITY

NETWORK CRITICALITY

SUMMARY

What's done?

- 1. Partial assessment of national infrastructure to seismic exposure.
 - Transport & power network.
 - Alpine Fault earthquake.
- 2. General analysis of indicators for network criticality.

What's next?

- 1. Complete seismic exposure assessment of national infrastructure.
 - Include more networks.
 - Add more earthquake scenarios.
 - Consider interdependencies.
- 2. Develop a systematic approach to determine network criticality.
- 3. Link seismic exposure and network criticality for broader impact assessment of national infrastructure.