Incorporating Soil Nonlinearity into Physics-Based Ground Motion Simulations

> Chris de la Torre 23 February 2017

Advisor: Brendon Bradley Co-Advisor: Misko Cubrinovski Co-Advisor: Liam Wotherspoon

Seismic Source

Source-to-Site Path

Site Effects

Bradley et al. (2017)

Lee et al. (2015)

Seismic Source

Source-to-Site Path

Site Effects

Bradley et al. (2017)

Slip (cm)

Lee et al. (2015)

Nonlinear Site Effects in Simulations

- 4 Methods for Incorporating Site Effects:
 - Fully coupled 3D
 - Domain Reduction Method
 - Empirical Vs30-based
 - Wave propagation site response

Step 2: 3D nonlinear subdomain

----**f**----Equivalen

<u>References:</u> Xu et al. (2003), Taborda and Bielak (2009), and Restrepo et al. (2012) <u>References:</u> B

References: Bielak et al. (2003), and Yoshimura et al. (2003)

Empirical V_{s20}–Based Factors

V_{S30}, PGA

References: Graves and Pitarka (2010, 2015)

1D Wave Propagation Site Response

<u>References:</u> Hartzell et al. (2002), and Roten et al. (2012)

Summary of Previous Studies

- Hartzell et al. 2002
 - Mw6.5 Seattle Fault, USA
 - Linear, Eq. Linear, Total and Effective Stress Nonlinear

	East-West Acc.	North–South Acc.	East-West Vel.	North–South Vel.	PSA 0.1 Sec North–South	PSA 0.33 Sec North–South	PSA 1.0 Sec North–South	PSA 3.3 Sec North–South
Input Motion* SHAKE91	705	760 1.1	75 1.3	125 1.4	1150 0.8	1370 1.0	740	455
DESRA2	1.3	1.3	1.3	1.3	0.7	1.1	1.2	1.2
NONLI3 OCR $=$ 3	1.0	1.0	1.2	1.2	1.2	1.1	1.2	1.3
NONLI3 OCR $= 1$ NOAH	0.6 0.7	0.6	1.2	1.2	0.9	1.0	1.2 1.8	1.3

*All values are in cgs units (cm/sec, cm/sec²)

• <u>Roten et al. 2012</u>

- Mw7.0 Wasatch Fault, Utah, USA
- Total Stress Nonlinear

Outline of Objectives

- Objective 1: Nonlinearity in Simulations of the 2010-2011 Canterbury Eqs
- Objective 2: Effective Stress Site Response for Liquefiable Sites
- Objective 3: Model Uncertainty in 1D Site Response Analysis
- Objective 4: Apply Lessons Learned to Kaikoura Earthquake at Wellington

Objective 1: 2010-2011 Canterbury EQs

- Simulations from Razafindrakoto et al 2016.
- 10 events Magnitude 4.7 7.1
- 17 strong motion stations in Christchurch
- Total stress site response

1D Wave Propagation Site Response Analysis

- Deconvolve with frequency domain solution
 - From V_{S,ref} to stiff soil/rock
 - Riccarton gravel: $V_s = 400 600 \text{ m/s}$
- OpenSees FE Code
- PDMY Constitutive Model

Site Characterisation

- Wood et al. (2011) and Wotherspoon et al (2014)
- SPT, CPT, V_s
- Deep V_s profiles: Teague et al. 2017

Metric for Quality of Simulations

Residual = In(PSA_{Observed}) – In(PSA_{Simulated})

Comparison of Response Spectra

Example Results: 3 Sites

Objective 2: Effective Stress Site Response

- Liquefaction in Mw7.1 Darfield and Mw6.2 Christchurch EQs
- Stress-density constitutive model
- When is Effective Stress > Total Stress ??

Objective 3: Model Uncertainty in Site Response

Error

- Can we reduce bias by increasing model complexity??
- Maintain same site characterization data

- Increasing model complexity
 - Pressure Dependent Vs
 - 3D-1D Site Response

Pressure-Dependent V_S

- Published profiles: Constant Vs
- Pressure dependence = depth dependence
- Maintain equal travel time btwn profiles

$$G = G_{ref} * \left(\frac{p'}{p'_{ref}}\right)^d$$

Objective 4: 2016 Mw7.8 Kaikoura EQ

- Severe liquefaction of reclaimed land:
 - Hydraulically-placed dredged fill
 - End-dumped quarry rock

Thank you!

- Acknowledgements:
 - Funding:
 - QuakeCoRE
 - University of Canterbury
 - Advisors:
 - Brendon Bradley
 - Misko Cubrinovski
 - Liam Wotherspoon
 - Support:
 - Chris McGann
 - Seohko Jeong
 - Hoby Razafindrakoto
 - Viktor Polak

