Developing site-specific high-frequency simulation componentary

Jagdish C. Vyas
Brendon A. Bradley
Hoby N.T. Razafindrakoto

Ethan Thomson

University of Canterbury

Introduction

$>$

$$
A\left(M_{0}, R, f\right)=S\left(M_{0}, f\right) * P(R, f) * G(f)
$$

[Boore, 2003; Graves and Pitarka, $(2010,2016)]$
> Use site-specific profiles instead of generic profile.
$>$ Using different profiles affect path and site terms.
> First objective: How site-specific profiles affect site or path or site+path terms and consequently ground-motions.
> Second objective: Apply site-specific method to different earthquakes e.g. 2016 Valentine EQ, 2011 Christchurch EQ, 2010 Darfield EQ.

Port Hill

Basin

Canterbury Foot Hill

Site term

$$
G(f)=A(f) * D(f)
$$

[Boore, 2003]
$>A(f)$ is computed using "quarter wavelength theory".
$A(f)=$ Square root of ratio of source to site impedences.
[Boore and Joyner, 1997]
$>D(f)=\exp (-p i * k * f)$

Port Hill

Canterbury Foot Hill

Residual Plot

Residual Plot

Residual Plot

Residual Plot

Port Hill

Canterbury Foot Hill

Port Hill

Canterbury Foot Hill

Residual Plot

> Summary:
> We understand/evaluate how the different 1D velocity profiles affect the site term and consequently ground-motions.
$>$ Velocity variations in top 300 to 500 m depth significantly affects the site amplification/term (depicts the importance of weathering function).
> Future work:
$>$ Need to better understand combined path and site components.
> Apply to different earthquakes to show/check the improvement in ground-motion estimation.

Thanks

Acknowledgements: Thanks to Sung, Robin and Karim for several fruitful discussion.

Residual Plot

Residual Plot

