

Ground Motion Simulation Uncertainty Quantification through Validation

QuakeCoRE Flagship 1 meeting
Sarah Neill

22-11-2018

$v(Sa>z) = \Sigma Rate_i P(Sa(T)>z | M_i,R_i,...)$

Motivation

Spectrum of research

Background Validation Work

Lee et al. (2018)

Validation of GM Sim w/o Modelling Uncertainty

- Median input parameters for validation
- Small and large magnitude events
- Comparisons w/ GMPEs
- Residual analysis

Razafindrakoto et al. (2017)

Pilot Study on Source Modelling Sensitivity

- February 22 & September 4 events
- Perturbations to Mw, A, Ti, Δσ,
- Mw and Δσ dominant for between event residuals

Method – High Level

- Sources of uncertainty:
 - Source model, crustal velocity model, site modelling
- Using FF sim. and data, identify dominant model params
- Using small Mw events, vary source parameters >
 IM variability
- Provides insight into source, path site model uncertainty
- Quantify σ using residuals
- Identify variability for future events

Method - Detailed

Spatial correlation lengths:	a _s standard deviation = 0.19	Mai and Beroza 2002
$\log_{10}(a_s) = \frac{1}{2}M_{\rm w} - 2.5$		Assume "all mechanisms"
$10g_{10}(u_s) - 2^{M_W} - 2.5$	a _d standard deviation = 0.18	
1, () 1,		Notes some update from
$\log_{10}(a_d) = \frac{1}{3}M_{\rm w} - 1.5.$	(note there is also error on the sub-	Mai and Beroza:
	parameters, to evaluate later)	$a_s = 0.53 M_w - 2.60$
		$a_d = 0.37 M_w - 1.80$

Rupture speed	0.8 ± 0.075 uniform distribution	*5km may have local and
$V_r = \begin{cases} 0.56 \times V_S & z < 5 \text{ km} \\ 0.8 \times V_S & z > 8 \text{ km} \end{cases},$	(Graves 2018 SCEC) Perturbation modified from GP2016 (which was 0.725 to 0.825 Vs) across	regional variations Kagawa et al. (2004).
= .8 x Vs z < <u>hypocentral</u> depth	entire rupture. with further 60% reduction in weak zones.	0.56 = 0.7 * 0.8 Agrees with Shearer et al. data, 2006
= .56 x Vs z > hypocentral depth + 3km	Further 70%: Test 50 to 80% reduction for the top 5km. G&P2010	Deep weak zone rupture speed reduction (GP2015)

Local rise time	Slip correlation Aagaard et al., 2008	Note, rise time is correlated
$\tau_i = \begin{cases} 2 \times k \times s_i^{1/2} & z < 5 \text{ km} \\ k \times s_i^{1/2} & z > 8 \text{ km} \end{cases}$	(Equation 5)	to slip (as it represents the time for 95% of the slip to
$(k \times s_i^{1/2} \qquad z > 8 \text{ km} $ (= τ_{0i} GP15)	2 factor ± 0.33 Depth scaling Kagawa	occur)
$= k \times s_i^{1/2}$ z < 15 km or hypocentral	et al. (2004) *note this is an estimate	
depth	for the weak shallow zone, would need	*Aagaard 2008 assumes 'z'
$= 2 \times k \times s_i^{1/2} z > 18 \text{ km or hypocentral}$	data from individual events to confirm.	is <u>subfault</u> height relative to sea level –still relevant? Or
depth + 3km	τ _i perturbation: G&P2015	since modified?
	ε = random from standard norm. dist.	
$ au_i = au_{0i} \exp(\varepsilon \sigma_R),$	$\sigma_R = 0.5$ (log-norm) <u>Dreger</u> et al. (2015)	*5km may have local and
	(not included GP16)	regional variations Kagawa et al. (2004).
GP2016: si replaced by n'ia	GP2015 perturbations – increase rise	
	time up to factor of 4	15km is thickness of brittle
		crust in active regions
	n'_{ia} = element of array n'_{a} for i^{th}	GP2015, Hanks and
	subfault	Bakun 2008, Shaw 2013
Average rise time, Moment magnitude $\tau_A = \alpha_\tau \times 1.6 \times 10^{-9} \times M_o^{1/3}$.	Average rise time (T _A) is constrained	Rise time calculation comes
	empirically in Somerville et al. (1999) and modified in Graves and Pitarka	from slip velocity function, with Kostroy-like pulse
GP2015: 1.6 changed to 1.45	2010 (specifically the 1.6x10 ⁻⁹ factor),	G&P2016 and Liu et al.
1/3	2015 and 2016	2006.
GP2016: $\tau_A = \alpha_T c_1 M_0^{1/3}$ $c_1 = 1.6 \text{E-9}$		Also refer GP2004.
_	τ _Α , factor of 2 range (estimated from	
	Figure 11, Somerville et al. (1999))	

Magnitude	Uniform distribution	Graves SCEC 2018
	± 0.0646 (equivalent to 25% variation	
	in Mo)	

Hypocentre location	Along strike, normal distribution,	Mai, P. M., P. Spudich and J.
	μ =0.5, σ = 0.23	Boatwright (2005)
	Down dip, Weibull distribution, strike slip events: scale λ = 0.626, shape k= 3.921	Shallow ruptures generate relatively weak HF ground motions, compared to deeper ruptures. (GP2010)
	Down dip, gamma distribution,	
	subduction dip-slip events: $\theta = 12.658$,	The location of the
	k = 0.034	hypocenter, should have a strong effect on the shape
	Mai, P. M., P. Spudich and J.	of the slip-velocity function
	Boatwright (2005)	(Day, 1982b)

Questions?