
Principles	for	collaboration	between	Researchers	and	Software	Development	
Brendon	Bradley	&	Sung	Bae		
November	2017	
	
Context:	
One	of	the	strengths	of	our	earthquake	resilience	research	collaboration	at	UC	is	the	close	
connection	 between	 researchers	 (grad	 students,	 postdocs,	 academic	 staff)	 and	 software	
developers.	The	fruitfulness	of	this	collaboration	is	reflected	in	the	values	and	culture	that	we	
express	toward	each	other	and	the	research	endeavour.		Because	personnel	will	come	and	go	
this	 document	 aims	 to	 provide	 the	 underpinning	 principles	 to	 ensure	 the	 most	 fruitful	
interactions.	
	
• We	are	all	in	this	together:	It	is	our	collective	efforts	and	research	outputs	that	make	our	

endeavours	 ultimately	 successful	 –	 no	 one	 person	 can	 achieve	without	 the	 significant	
prior	 work	 that	 others	 have	 contributed	 (be	 it	 research	 outcomes	 or	 code-base	
development),	 and	 the	 active	 collaboration	 that	 occurs	 during	 undertaking	 research.		
Significant	 active	 collaboration	 should	 be	 reflected	 in	 joint	 authorship	 of	 research	
publications,	and	minor	collaboration	or	prior	contributions	via	paper	acknowledgements.	
The	role	of	software	developers	in	co-authorship	should	be	seen	in	the	same	manner	as	
for	research	students	of	academic	supervisors.	

• We	are	research	outcome-driven:	There	are	many	activites	that	are	interesting,	but	it	is	
important	that	we	retain	 focus	on	the	topics	that	are	both	 interesting	and	of	research	
relevance.	You	may	not	realize	it	(because	you	are	purposefully	sheltered	from	it!),	but	
there	are	significant	financial	pressures	to	obtain	and	maintain	the	funding	to	undertake	
our	 research,	 and	 it	 is	 only	 by	 delivering	 on	 such	 research	 expectations	 (through	
publications	 principally,	 but	 also	 other	 means)	 that	 such	 funding	 can	 continue	 to	 be	
obtained.	This	applies	both	for	software	development	and	for	investigator-led	research.	
If	you	have	an	interesting	idea	that	is	not	currently	tasked	then	convince	others	that	it	
needs	to	be	considered	(or	we	need	to	get	funding	to	do	so).	

• Rapid	 prototyping	 –	 production	 software:	 As	 a	 research	 enterprise	 we	 focus	 on	
developing	disruptive	technologies.		This	poses	challenges	in	the	development	of	software	
workflows	–	because	the	aims	of	the	research	endeavour	mean	that	our	needs	continually	
change.	 	 Therefore,	 there	 is	 conventionally	 a	need	 for	 rapid	prototyping	 to	 test	many	
ideas,	and	very	few	of	them	will	snowball	into	the	development	of	production	software.		
Rapid	protyping	also	will	often	only	involve	a	few	people,	but	further	development	will	
naturally	require	involvement	of	others	to	spread	expertise,	for	resourcing	flexibility	and	
long-term	productive	increases.	

• Functionality	->	integration	->	efficiency:	Prototyping	code	should	initially	focus	solely	on	
functionality	 required	 to	 undertake	 a	 research	 outcome-driven	 task.	 	 Revisions	 to	 the	
prototype	 to	 seemlessly	 incorporate	 it	 into	 a	 code-base	will	 focus	 on	 integration	 and	
abstraction.	 	 When,	 and	 if	 identified	 necessary,	 the	 final	 step	 will	 be	 computational	
efficiency.	

• Prioritisation:	Its	a	brick-by-brick	process	to	achieve	technological	advancement.		Tasks	
that	 provide	 significant	 stability/reliability	 of	 critical	 workflows	 and	 advancing	 new	
workflows	to	achieve	mission	critical	research	tasks	will	receive	the	greatest	priorities.		If	
a	task	needs	to	be	prioritised	or	de-prioritised	in	your	opinion	then	talk	to,	and	convince	
others	to	come	to	concensus.	


