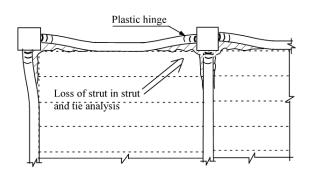


DT2: Whole-of-building Seismic Performance

Key Contacts / Authors: Rick Henry, Santiago Pujol



Recent Examples

Precast floors

 Repair costs for non-structural components

Criticism of "low-damage" systems

Resilient or Repairable Te Hiranga Rū | QuakeCoRE Aotearoa New Zealand Centre for Earthquake Resilience Buildings

1. Structural components

Structural disciplinary Theme: "Whole of building seismic performance"

- 2. Structural systems (more than components)
- 3. Entire buildings (more than structural system)

Inter-disciplinary programmes

- 4. Clusters of buildings (more than 1 building)
- 5. Cities and communities (more than buildings)

Research Questions

- How do component interactions ignored during design affect the <u>seismic response</u> of buildings?
- What <u>damage</u> occurs due to component interactions in existing buildings?
- What <u>novel solutions</u> can be used to mitigate the effects of component interactions in new buildings?
- What are the demands imposed on <u>non-structural</u> <u>components</u> either from earthquake shaking or interaction with structural components?
- How does improved understanding of whole of building response effect the seismic performance and loss estimates across a <u>range of hazard levels / limit states</u>?

Whole of building

• Consideration of structural-to-structural component interactions as well as non-structural components.

Whole of life design

 Consideration of performance objectives and all limit states and costs associated with damage to various components.

Theme	Focus area	Large-scale testing and monitoring	Numerical modelling	Design and implementation
Whole of building	Vertical – Horizontal system interaction	1.1	1.2	1.3
	Diaphragm behaviour and demands	2.1	2.2	2.3
	Non-structural systems	3.1	3.2	3.3
Whole of life design		4.1	4.2	4.3

Horiz-Vert System Interaction

Wall-to-floor interaction (RC, PT, timber walls)

Coupled and core wall systems

Precast concrete buildings (industrial + multi-storey)

Braced frames (EBF + CBF + rocking)

Diaphragms

- Existing buildings:
 - Precast concrete [Recast]

- New buildings:
 - Composite steel tray floors
 - Post-tensioned slabs
 - Timber CLT

How?

- What can be tested in the lab?
 - Connections
 - Sub-assembly
 - Whole buildings [friends...]

- What can be modelled?
- What test data is available to validate models?
- What data can be obtained from instrumented buildings or field testing?

What aligned funding (existing or new) can we access?